UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA"

Transcripción

1 UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 5: VARIABLES ALEATORIAS Y DISTRIBUCIONES CONTINUAS Profesor: Hugo S. Salinas. Segundo Semestre Si 20 % de los usuarios prefiere los teléfonos móviles de color blanco sobre cualquier otro color disponible. Cuál es la probabilidad de que entre los siguientes 1000 teléfonos móviles que se venden a) entre 170 y 185 inclusive sean blancos? b) al menos 210 pero no más de 225 sean blancos? R: a) y b) Estadísticas publicadas por cierto estudio muestran que en una noche promedio de fin de semana, uno de cada 10 conductores está ebrio. Si se verifican 400 conductores al azar la siguiente noche de sábado, cuál es la probabilidad de que el número de conductores ebrios sea a) menor que 32? b) más de 49? c) al menos 35 pero menos de 47? R: a) b) y c) Una compañía produce componentes para un motor. Las especificaciones de las partes sugieren que 95 % de los artículos cumplen con las especificaciones. Las partes se embarcan en lotes de 100 a los clientes. a) Cuál es la probabilidad de que más de dos artículos estén defectuosos en un lote dado? b) Cuál es la probabilidad de que más de 10 artículos estén defectuosas en un lote? R: a) y b) Supongamos que el diámetro de los árboles de determinado tipo, a la altura del pecho, se distribuye normalmente con media µ = 8.8 y σ = 2.8, como se sugiere en el artículo Simulating a Harvester- Forwarder Softwood Thinning (Forest Products Journal, mayo de 1997, pp ) a) Cuál es la probabilidad de que el diámetro de un árbol, seleccionado al azar, sea a lo más 10 pulgadas? b) Cuál es la probabilidad de que el diámetro de un árbol, seleccionado al azar, sea mayor de 10 pulgadas?. c) Cuál es la probabilidad de que el diámetro de un árbol seleccionado al azar se encuentre entre 5 y 10 pulgadas?. d) Qué valor de θ es tal que el intervalo (8.8 θ, θ) incluya el 98 % de todos los valores de diámetros? R: a) b) c) y d) θ = Guía de Trabajo 5 1

2 5. La duración (en horas) de cierto transistor de televisor es una variable aleatoria continua T, cuya función de densidad es: { 150, t > 150, f(t) = t 2 0, e.o.c. a) Si un televisor determinado todavía funciona después de 200 horas. Cuál es la probabilidad de que dicho transistor dure a lo más 300 horas? Se instalan 3 de tales transistores en un televisor. b) Cuál es la probabilidad de que ninguno tenga que ser sustituido en las primeras 200 horas de uso? c) Cuál es la probabilidad de que los tres transmisores tengan que ser sustituidos durante las 200 primeras horas? d) Cuál es la probabilidad de que exactamente 1 tenga que ser sustituido en las 200 primeras horas de uso? R: a) 0.33 b) c) y d) Se desean rodamientos de un centímetro de radio, con tolerancia de 0.5 milímetros. El fabricante gana 0.10 dólares por cada rodamiento aceptado. Si el radio es menor de lo permitido, el rodamiento se debe refundir, produciendo una pérdida de 0.05 dólares; por otra parte, si el radio es mayor de lo aceptado se debe rebajar el rodamiento, con una pérdida de 0.03 dólares. Supongamos que el radio de los rodamientos tiene una distribución normal con media 1.01 centímetro y una varianza de centímetros cuadrados. a) Cuál es la utilidad esperada? b) A cuánto se debería modificar la ganancia por cada rodamiento aceptado si se espera ganar 0.07 dólares por cada rodamiento? c) Se seleccionaron 5 rodamientos. Cuál es la probabilidad de que tres o más cumplan las especificaciones? d) Se necesitan cuatro rodamientos de diámetro mayor que 2.05 centímetros para un aparato especial. Cuál es la probabilidad de probar exactamente 10 rodamientos? R: a) b) c) La frecuencia de la radiación electromagnética emitida por un teléfono móvil sigue una distribución normal con media 1200 MHz y desviación estándar 300 MHz. a) Calcular la probabilidad de que la frecuencia de la onda emitida sea superior a 1500 MHz. b) Calcular la probabilidad de que la frecuencia se mantenga entre 1000 y 1200 MHz. c) Sabiendo que la frecuencia emitida es inferior a los 1600 MHz, calcular la probabilidad de que se mantenga por encima de los 1000 MHz. d) El 0.8 % de los teléfonos móviles presentan una frecuencia tan alta que afectan a radios, televisores, computadoras, etc. Calcular la frecuencia a partir de la cual un teléfono interfiere en otros aparatos eléctricos. R: a) b) c) y d) La empresa Concha y Toro produce entre 200 y 300 galones de vino diarios. La distribución uniforme es la que mejor describe este proceso. a) Cuánto vino se produce al día en promedio? Guía de Trabajo 5 2

3 b) Cuál es la cantidad de variabilidad en el número de galones de vino producidos de un día a otro? c) En qué porcentaje de los días puede esperarse que la producción caiga entre 220 y 270 galones? d) Cuál es la probabilidad de que la producción de ma nana sea mayor que 280 galones? R: a) 250 galones b) c) 50 % y d) La memoria RAM para un computador se puede recibir de dos fabricantes A y B con igual probabilidad. Si la memoria proviene del fabricante A, la probabilidad de que falle antes del tiempo especificado por la garantía es P (X 1) = , si la memoria proviene del fabricante B, la probabilidad de que falle antes del tiempo especificado por la garantía es P ( Y < 2) donde Y tiene una distribución normal de media 4 y varianza 4. a) Si el experimento aleatorio consiste en probar una memoria RAM hasta que falle, traducir los datos del enunciado, introduciendo los sucesos convenientes. b) Cuál es la probabilidad de que una memoria RAM falle antes del tiempo especificado por la garantía? c) Si se ha observado que la memoria RAM ha fallado, cuál es la probabilidad de que proceda del fabricante A? d) Si se tienen 40 memorias RAM, cuál es la probabilidad de que al menos el 90 % de ellas duren más que el tiempo especificado por la garantía? R: b) c) y d) Consideramos una señal de intensidad I, cuya distribución de valores se puede modelizar por una Normal con media µ y desviación estándar σ (ambos desconocidos), pero se sabe que: P (I < 9) = y P (I > 3) = , a) Determinar los parámetros de la distribución de I. b) Si, al realizar una emisión, la señal tiene una intensidad menor de 3, se considera de intensidad baja, mientras que si tiene una intensidad mayor de 9, se considera de intensidad alta. Si la intensidad está incluida entre 3 y 9, se considera de intensidad media. i. Determinar la proporción de emisiones con intensidad de cada tipo. ii. Si en una sesión, se emiten 20 veces la señal, cuál es la probabilidad de que se observe menos de cuatro veces una señal de intensidad baja? c) Se diseña un sistema de control cuyo objetivo es homogeneizar las emisiones: si la señal es de intensidad baja, el sistema consigue transformarla en una señal de intensidad media en el 50 % de los casos, dejándola de intensidad baja en el resto de los casos. Si la señal es de intensidad alta, consigue rebajar su intensidad a media en el 30 % de los casos, dejándola de intensidad alta en el resto de los casos. Finalmente, si la señal es de intensidad media, el sistema la deja idéntica. i. Si se emite una señal y se le aplica el control, cuál es la probabilidad de que obtengamos como resultado una señal de intensidad baja?, y de intensidad media?, y de intensidad alta? ii. Si se emite una señal y se le aplica el control dos veces consecutivas, cuál es la probabilidad de que obtengamos como resultado una señal de intensidad media? iii. Si se emite una señal y se le ha aplicado el control, resultando la señal transformada de intensidad media, cuál es la probabilidad de que también fuera de intensidad media antes de aplicarle el control? Guía de Trabajo 5 3

4 R: a) µ = 5 y σ = 2 b) i. Baja: , Alta: y Media: ii c) i , y 0.016, respectivamente. ii iii Un sistema cuenta con un gran número de componentes de un mismo tipo. Supongamos que el tiempo de falla T (medido en horas) de cualquiera de estas componentes sigue aproximadamente una distribución normal, con media 100 horas y desviación estándar 20 horas. a) Calcular la probabilidad de que una componente dada dure más de 110 horas. b) Se desea dar una garantía de reemplazo para cualquier componente que dure menos de M horas. Encontrar el valor de M para que la probabilidad de que se haga efectiva la garantía sea sólo un 1 %. c) Considerar 20 componentes con tiempos de falla independientes (esto es, si T 1,..., T 20 son los tiempos de falla, los eventos {T i > t i } son mutuamente independientes para todo t i ), cada una con la distribución antes mencionada. Calcular la probabilidad de que a lo más dos componentes duren más de 100 horas. R: a) b) 53.6 y c) El nivel de llenado de unas botellas de bebidas gaseosas tiene una distribución normal con media 2 litros y desviación estándar 0.06 litros. Las botellas que contienen menos de 95 % del contenido neto anunciado pueden causar una multa al fabricante por parte del Servicio Nacional del Consumidor, mientras que las botellas que tienen un contenido neto mayor que 2.1 litros pueden provocar un derrame del exceso al abrirlas. a) Cuál es la probabilidad de que le pongan una multa al fabricante, si se selecciona al azar una botella de la producción? b) Qué proporción de las botellas pueden provocar un derrame al abrirlas? c) Qué cantidad mínima de refresco se espera que contenga 99 % de las botellas? d) En un día se llenan 100 botellas cuál es la probabilidad de que haya en un día más de 4 botellas que puedan provocar un derrame al abrirlas? e) Utilizando el apartado anterior, cuál es, en un mes de 30 días, el número medio de días en los que se producen más de 4 botellas que puedan provocar un derrame al abrirlas? R: a) b) c) d) e) 16 días en promedio. 13. Si una v.a. X tiene distribución gamma con α = 2 y β = 1. Calcular P (1.8 < X < 2.4). R: En cierta ciudad, el consumo diario de agua (en millones de litros) sigue aproximadamente una distribución gamma con α = 2 y β = 3. Si la capacidad diaria de dicha ciudad es nueve millones de litros de agua. a) Calcular la media y la varianza del consumo diario de agua. b) De acuerdo con el Teorema de Chebyshev, hay una probabilidad de al menos de que el consumo de agua en cualquier día dado caiga dentro de qué intervalo? R: a) µ = 6 y σ 2 = 18 y b) De 0 a millones de litros. 15. La longitud de tiempo para que un individuo sea atendido en un bar es una v.a. que tiene una distribución exponencial con una media de cuatro minutos. Cuál es la probabilidad de que una persona sea atendida en menos de tres minutos en al menos cuatro de los siguientes días? R: Guía de Trabajo 5 4

5 16. Supongamos que la vida de servicio, en años, de la batería de un aparato para sordos es una v.a. que tiene una distribución de Weibull con α = 1/2 y β = 2 a) Cuánto tiempo se puede esperar que dura la batería? b) Cuál es la probabilidad de que tal batería esté en operación después de dos años? R: a) y b) Las vidas de ciertos sellos de automóvil tienen una distribución de Weibull con tasa de falla h(t) = 1 t. Calcular la probabilidad de que tal sello todavía esté en uso después de cuatro años. R: En una actividad de investigación biomédica se determinó que el tiempo de sobrevivencia en semanas de un animal cuando se le somete a cierta exposición de radiación tiene una distribución gamma con α = 5 y β = 10. a) Cuál es el tiempo medio de sobrevivencia de un animal seleccionado al azar del tipo que se utilizó en el experimento? b) Cuál es la desviación estándar del tiempo de sobrevivencia? c) Cuál es la probabilidad de que un animal sobreviva más de 30 semanas? R: a) µ = αβ = 50, b) σ 2 = αβ 2 = 500; σ = y c) El tiempo de respuesta de una computadora es una aplicación importante de las distribuciones gamma y exponencial. Supongamos que un estudio de cierto sistema computacional revela que el tiempo de respuesta en segundos tiene una distribución exponencial con media de tres segundos. a) Cuál es la probabilidad de que el tiempo de respuesta exceda cinco segundos? b) Cuál es la probabilidad de que el tiempo de respuesta exceda 10 segundos? R: a) y b) El número de automóviles que llegan a cierta intersección por minuto tiene una distribución de Poisson con una media de 10. El interés se centra alrededor del tiempo que transcurre antes de que 15 automóviles aparezcan en la intersección. a) Cuál es la probabilidad de que más de 15 automóviles aparezcan en la intersección durante cualquier minuto? b) Cuál es la probabilidad de que se requieran más de dos minutos antes de que lleguen 15 autos? c) Cuál es la probabilidad de que transcurra más de un minuto entre llegadas? d) Cuál es el número medio de minutos que transcurren entre llagadas? R: c) e 10 y d) β = Guía de Trabajo 5 5

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 4: VARIABLES ALEATORIAS CONTINUAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Resolver los siguientes

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

Si buscamos conversiones de una variable aleatoria exponencial con parámetro Á,, el método de la transformada inversa produce

Si buscamos conversiones de una variable aleatoria exponencial con parámetro Á,, el método de la transformada inversa produce 170 PROBABILIDAD Y ESTADÍSTICA PARA INGENIERÍA Si buscamos conversiones de una variable aleatoria exponencial con parámetro Á,, el método de la transformada inversa produce xi = in (u ), i = 1, 2,... (6-34)

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Inferencia Estadística

Inferencia Estadística Universidad Nacional de San Cristóbal de Huamanga Facultad de Ingeniería de Minas, Geología y Civil Departamento Académico de Matemática y Física Área de Estadística Inferencia Estadística Alejandro Guillermo

Más detalles

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas)

Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Unidad 4: Distribuciones de Probabilidad (Discretas y Continuas) Ejercicio 4 1 Una persona vende automóviles nuevos para una empresa. Generalmente negocia el mayor número de autos los sábados. Ha establecido

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

Capítulo 5. Variables aleatorias continuas. 5.1. Introducción. 5.2 Distribuciones continuas

Capítulo 5. Variables aleatorias continuas. 5.1. Introducción. 5.2 Distribuciones continuas Capítulo 5 Variables aleatorias continuas 5.1 Introducción 5.2 Distribuciones continuas 5.2.1 Uniforme 5.2.2 Exponencial 5.2.3 Weibull 5.2.4 Normal 5.3 Muestras aleatorias. Otros tipos de muestreo 5.4

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS Muchos problemas de ingeniería, ciencia, y administración, requieren que se tome una decisión entre aceptar o rechazar una proposición sobre algún parámetro. Esta proposición recibe

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Estadística aplicada y modelización. 15 de junio de 2005

Estadística aplicada y modelización. 15 de junio de 2005 Estadística aplicada y modelización. 15 de junio de 2005 SOLUCIÓN MODELO A 1. En una población de fumadores se quiere examinar la relación entre el número de cigarrillos que consumen diariamente y el número

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

La Probabilidad. Heraldo Gonzalez S.

La Probabilidad. Heraldo Gonzalez S. La Probabilidad Heraldo Gonzalez S. 2 Plan de Regularización, Estadistica I LA DISTRIBUCIÓN NORMAL Quizás es la más importante de las distribuciones continuas, se usa profusamente en Inferencia Estadística

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD EJERCICIOS 5 Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Una compañía de seguros utiliza la

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación de Septiempbre, 00 Cuestiones 1h C1. El tiempo que un ordenador tarda en ejecutar una tarea es una v.a. Y Expλ). Para hacer un estudio

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N Profesor: Hugo S. Salinas. Segundo Semestre 200. Unos transductores

Más detalles

Estimación de la densidad

Estimación de la densidad 23 de marzo de 2009 : histograma Si suponemos que F tiene función de densidad f puede ser útil estimarla. Un estimador muy utilizado es el histograma. Dado un origen x 0 y un ancho h > 0 el histograma

Más detalles

Estadística Computacional Guía Nº2. 10 de Abril de 2003

Estadística Computacional Guía Nº2. 10 de Abril de 2003 Universidad Técnica Federico Santa María Departamento de Informática Contenidos Análisis Combinatorio Teoría Básica de Probabilidades Estadística Computacional Guía Nº2 10 de Abril de 2003 Profesor: Dr.

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

DIAGRAMAS DE CONTROL TEORÍA GENERAL

DIAGRAMAS DE CONTROL TEORÍA GENERAL 1. DESARROLLO HISTÓRICO DIAGRAMAS DE CONTROL TEORÍA GENERAL 20 s Shewhart Primeros avances en el control estadístico de calidad. Segunda Guerra Mundial Se emplearon con mayor fuerza No se utilizaron Deming

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Teoría de la Decisión Estadística Ejercicios

Teoría de la Decisión Estadística Ejercicios Teoría de la Decisión Estadística Ejercicios 1. Una librería debe decidir cuántas revistas pedir. Las compra a 20 euros y las vende a 25. Las revistas que no vende al final del día no tienen valor. La

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Unidad 9. Estimación

Unidad 9. Estimación Unidad 9 Estimación Estimación En los capítulos anteriores se han estudiado las nociones fundamentales de distribución de probabilidad y distribución muestral. Estamos ya en condiciones de tratar los métodos

Más detalles

Facultad de Ingeniería. Probabilidad y Estadística. Guía de ejercicios

Facultad de Ingeniería. Probabilidad y Estadística. Guía de ejercicios Facultad de Ingeniería UBA Probabilidad y Estadística Guía de ejercicios GUIA 1 Teoría de la probabilidad Espacios muestrales Probabilidad condicional Independencia 1. Defina el espacio muestral para cada

Más detalles

Capítulo 6. Inferencia estadística. 6.1. Introducción. 6.2 Estimación. 6.3 Contrastes de hipótesis. 6.4 Diseño de expermientos

Capítulo 6. Inferencia estadística. 6.1. Introducción. 6.2 Estimación. 6.3 Contrastes de hipótesis. 6.4 Diseño de expermientos Capítulo 6 Inferencia estadística 6.1 Introducción 6.2 Estimación 6.3 Contrastes de hipótesis 6.4 Diseño de expermientos 6.1. Introducción La inferencia estadística trata los métodos mediante los cuales

Más detalles

Cuaderno de Ejercicios de Estadística Teórica

Cuaderno de Ejercicios de Estadística Teórica Cuaderno de Ejercicios de Estadística Teórica Curso 2010/11 Departamento de Economía Aplicada GRADO ADE Tema 1 Introducción a la Probabilidad Estadística Teórica 1.- En una sala multicine funcionan simultáneamente

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o Profesor: Hugo S. Salinas. Segundo Semestre. RESOLVER. 3

Más detalles

1 Tema 1: Estadística descriptiva

1 Tema 1: Estadística descriptiva PROBLEMAS DE MATEMÁTICAS Estadística Curso 2005-2006 Primero Licenciatura en Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 1 Tema 1: Estadística descriptiva

Más detalles

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD www.siresistemas.com/clases Ing. Oscar Restrepo DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 1. Debido a las elevadas tasas de interés, una empresa reporta que el 30% de sus cuentas por cobrar de otras empresas

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES

5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5. DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.. Distribuciones de Probabilidad de una variable aleatoria continua Toda distribución de probabilidad es generada por una variable aleatoria x,

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos c Solución óptima (1.5,0.5 Valor 3.5. 0.5 puntos. Para recaudar dinero para el viaje de fin de curso, unos estudiantes han vendido camisetas, bufandas y gorras a 10, 5 y 7 euros respectivamente. Han recaudado

Más detalles

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA El análisis de Weibull es la técnica mayormente elegida para estimar una probabilidad, basada en datos medidos o asumidos. La distribución

Más detalles

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH 1) ANÁLISIS DE CORRELACIÓN Dado dos variables, la correlación permite hacer estimaciones del valor de una de ellas conociendo el valor de la otra variable.

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Procesos Estocásticos de Tiempo Contínuo Práctico Ejercicio 1 Sean X e Y variables

Más detalles

Estadística EIAE (UPM) Estadística p. 1

Estadística EIAE (UPM) Estadística p. 1 Ö Ó ÓÒØ ÒÙÓ ÑÓ ÐÓ p. 1 Ejercicio 1 A una gasolinera llegan, en media, 3 coches por minuto. Calcular la probabilidad de que a) En 1 minuto lleguen dos coches. b) En 1 minuto lleguen al menos dos coches.

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948 1/10 CPE (SEGUNDO CURSO PRÁCICA 1 SOLUCIONES (Curso 2015 2016 1. Suponiendo que los sucesos terremotos y huracanes son independientes y que en un determinado lugar la probabilidad de un terremoto durante

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística ( ) x n P(X x) = p i (1 p) n i i σ 2 X i=0 µ X = np = np(1 p) Variables Aleatorias Discretas y algunas Distribuciones de Probabilidad Raúl D. Katz Pablo A. Sabatinelli 2013 Índice

Más detalles

Clase 7: Algunas Distribuciones Continuas de Probabilidad

Clase 7: Algunas Distribuciones Continuas de Probabilidad Clase 7: Algunas Distribuciones Continuas de Probabilidad Distribución Uniforme Continua Una de las distribuciones continuas más simples en Estadística es la Distribución Uniforme Continua. Esta se caracteriza

Más detalles

Modelos univariantes

Modelos univariantes Modelos univariantes 1.- 10.000 personas de la misma edad y grupo social tienen suscritas pólizas de seguros de vida con una compañía. Se estima que la probabilidad de que cada asegurado muera durante

Más detalles

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5 Concurso BECAS 2016 Ejercicios orientadores 1) En la ciudad de Odnap los ómnibus urbanos cumplen sus horarios con rigurosidad y tienen una frecuencia constante a lo largo del día. El ciudadano Imel concurre

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA N 1 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. En un ensayo de colaboración,

Más detalles

RESPUESTAS: c) $75.00. 166) a) 70,000 litros b) 11,547 litros 167) a) 12.5 litros b) 1 3

RESPUESTAS: c) $75.00. 166) a) 70,000 litros b) 11,547 litros 167) a) 12.5 litros b) 1 3 170) Suponte que los resultados de un examen son una variable normal con media 78 y varianza 36 a) Cuál es la probabilidad que una persona que presenta el examen obtenga una calificación mayor que 7? b)

Más detalles

REGLAMENTO METROLÓGICO DE SISTEMAS DE ASIGNACIÓN Y REGISTRO DEL CONSUMO DE TELEFONIA FIJA Y MOVIL.

REGLAMENTO METROLÓGICO DE SISTEMAS DE ASIGNACIÓN Y REGISTRO DEL CONSUMO DE TELEFONIA FIJA Y MOVIL. 1 REGLAMENTO METROLÓGICO DE SISTEMAS DE ASIGNACIÓN Y REGISTRO DEL CONSUMO DE TELEFONIA FIJA Y MOVIL. SUMARIO 1.- CAMPO DE APLICACIÓN. 2.- REQUISITOS DE LOS SISTEMAS DE MEDICIÓN Y REGISTRO DEL SERVICIO

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 4: VARIABLES ALEATORIAS CONTINUAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS MEDIANTE UN ENFOQUE POR CADENAS DE MARKOV ABSORBENTES Lidia Toscana - Nélida Moretto - Fernanda Villarreal Universidad Nacional del Sur, ltoscana@criba.edu.ar

Más detalles

Tema 17 Deformación y falla de los materiales polímeros.

Tema 17 Deformación y falla de los materiales polímeros. Tema 17 Deformación y falla de los materiales polímeros. Las propiedades mecánicas de los materiales polímeros se especifican con muchos de los mismos parámetros usados en los metales. Se utiliza la prueba

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Fiabilidad. Fiabilidad. 2.0. Esquema conceptual de la unidad. Introducción Matemática a la variable aleatoria. Curva Davies o de la bañera

Fiabilidad. Fiabilidad. 2.0. Esquema conceptual de la unidad. Introducción Matemática a la variable aleatoria. Curva Davies o de la bañera 2 Fiabilidad 2.. Esquema conceptual de la unidad Introducción Matemática a la variable aleatoria Fiabilidad Curva Davies o de la bañera Fiabilidad e infiabilidad Tipos de ensayos en fiabilidad Relación

Más detalles

GRAFICAS DE CONTROL. Angel Francisco Arvelo L.

GRAFICAS DE CONTROL. Angel Francisco Arvelo L. GRAFICAS DE CONTROL Angel Francisco Arvelo L. Caracas, Marzo de 2006 1 ANGEL FRANCISCO ARVELO LUJAN Angel Francisco Arvelo Luján es un Profesor Universitario Venezolano en el área de Probabilidad y Estadística,

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO.

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMA 1 A un puerto de carga y descarga de material, llegan durante la noche los barcos, que serán descargados durante el día siguiente.

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

TEMA 2. CÁLCULO DE PROBABILIDADES

TEMA 2. CÁLCULO DE PROBABILIDADES TEM 2. CÁLCULO DE PROILIDDES 2.1. Introducción 2.2. Conceptos básicos 2.2.1. Espacio muestral. Sucesos 2.2.2. Operaciones con sucesos 2.3. Concepto de Probabilidad. Propiedades 2.3.1. Definición clásica

Más detalles

Tema 1. Inferencia estadística para una población

Tema 1. Inferencia estadística para una población Tema 1. Inferencia estadística para una población Contenidos Inferencia estadística Estimadores puntuales Estimación de la media y la varianza de una población Estimación de la media de la población mediante

Más detalles

EJERCICIOS DE MÉTODOS ESTADÍSTICOS CURSO 10-11

EJERCICIOS DE MÉTODOS ESTADÍSTICOS CURSO 10-11 EJERCICIOS DE MÉTODOS ESTADÍSTICOS CURSO 10-11 Métodos Estadísticos. ITIE Curso 10/11 Hoja 1 1. El número de obleas de silicio defectuosas a lo largo de 26 días de producción han sido: 2, 4, 6, 6, 4, 4,

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística El Objetivo La teoría de colas o líneas de espera, procura el estudio riguroso del fenómeno (muy común en estos tiempos)

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008 UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN, CIENCIA E INVESTIGACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre

Más detalles

EVALUACIÓN N DE PROYECTOS. Eco. Juan Carlos Gilardi PROMPEX Marzo 2007

EVALUACIÓN N DE PROYECTOS. Eco. Juan Carlos Gilardi PROMPEX Marzo 2007 EVALUACIÓN N DE PROYECTOS Eco. Juan Carlos Gilardi PROMPEX Marzo 2007 DEFINICION Evaluar un proyecto implica identificar y cuantificar creativamente costos y beneficios de una idea o alternativa con el

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (014) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010.

Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Introducción a la Estadística y a la Probabilidad Tercer examen. Capítulo 5 y 6. Viernes 5 de febrero del 2010. Dos puntos 1. Para cada una de las siguientes variables, indica si son variables aleatorias,

Más detalles

Algunas distribuciones importantes de probabilidad

Algunas distribuciones importantes de probabilidad Capítulo 5 Algunas distribuciones importantes de probabilidad En los temas anteriores se presentaban ejemplos de distintos experimentos aleatorios y de variables aleatorias que expresan sus resultados.

Más detalles

Una introducción amable a la teoría de colas

Una introducción amable a la teoría de colas Pablo Serrano Yáñez-Mingot, José Alberto Hernández Gutiérrez Una introducción amable a la teoría de colas Departamento de Ingeniería Telemática - Universidad Carlos III de Madrid Control de versiones 205-09-22

Más detalles
Sitemap