PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)"

Transcripción

1 PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A.. Suponga que en una estación con un solo servidor llegan en promedio 45 clientes por hora, Se tiene capacidad para atender en promedio a 60 clientes por hora. Se sabe que los clientes esperan en promedio 3 minutos en la cola. Se solicita: a) Tiempo promedio que un cliente pasa en el sistema. b) Número promedio de clientes en la cola. c) Número promedio de clientes en el Sistema en un momento dado. Solución: Se conoce la siguiente información: λ= 45 clientes/hora (media de llegada de los clientes)= 45/60 clientes/minutos µ= 60 clientes/hora (media de servicio a los clientes) = 60/60 clientes/minutos= W q = 3 minutos (tiempo promedio de espera de un cliente en la cola) a) Para calcular el tiempo promedio que un cliente pasa en el Sistema (W s ). Lo podemos calcular a partir de W q y µ. W s = W q + = 3 minutos + = 3 + = 4 minutos μ Es decir en promedio un cliente pasa 4 minutos en el Sistema: distribuidos así 3 minutos pasa esperando en la cola + minutos en servicio. b) Para calcular el número de clientes en la cola (Lq), usaremos la fórmula siguiente: Lq= λ W q. L q = λ W q =0.75 clientes * 3 minutos = 2.25 clientes. minutos Es decir los cálculos nos muestran que en la cola puede haber más de dos clientes en la cola. c) Para calcular cual es el número de clientes en la cola (L s ). Lo podemos hacer con la fórmula: L s = λ W s. L S = λ W S = 0.75 cliente 4 minutos = 3 clientes minutos Es decir en promedio hay tres clientes en el sistema, como se nos ha dicho que solo hay un servidor, sabemos que solo un cliente puede estar en servicio, por lo que los demás deben estar en la cola. Esto indica que hay dos clientes en espera. MSc. Julio Rito Vargas A. Página

2 2. Suponga un restaurante de comidas rápidas al cual llegan en promedio 00 clientes por hora. Se tiene capacidad para atender en promedio a 50 clientes por hora Se sabe que los clientes esperan en promedio 2 minutos en la cola Calcule las medidas de desempeño del sistema a) Cuál es la probabilidad que el sistema este ocioso? b) Cuál es la probabilidad que un cliente llegue y tenga que esperar, porque el sistema está ocupado? c) Cuál es el número promedio de clientes en la cola? d) Cuál es la probabilidad que hayan 0 clientes en la cola? Solución: Se conoce la siguiente información: λ= 00 clientes/hora (media de llegada de los clientes)= 00/60 clientes/minutos µ= 50 clientes/hora (media de servicio a los clientes) = 50/60 clientes/minutos= W q = 2 minutos (tiempo promedio de espera de un cliente en la cola) a) Para conocer cuál es la probabilidad de que el sistema este ocioso, primero conoceremos, cual es la probabilidad que esté ocupado o factor de utilización del sistema. ρ = λ cliente/hora =00 = 0.66 = 66.7% este porcentaje representa tiempo μ 50 cliente/hora que el sistema está ocupado. Es decir (- ρ) representa el tiempo ocioso del sistema, es decir = = 33.3% el sistema permanece ocioso. b) La probabilidad que un cliente llegue y tenga que esperar es suponer que estará como primer cliente en la cola. Usaremos la fórmula: P n = ( λ μ ) (λ μ )n Para nuestro caso n= y la formula se convierte en: P = ( λ μ ) (λ μ ) = ( )(00 50 ) = ( 0.667)(0.667) = 0.222=22.2% Es decir existe un 22.2% de posibilidad que haya un cliente en la cola esperando ser atendido. c) Ahora requerimos calcular el número de clientes en la línea de espera. L q = λ W q =.667 clientes * 2 minutos = clientes. 4 clientes en la cola. minutos Es decir existe la posibilidad de llegar a tener un promedio de 4 clientes en la línea de espera. MSc. Julio Rito Vargas A. Página 2

3 d) La probabilidad de que hayan 0 clientes en la cola, como hemos visto existe un promedio de tener hasta 4 clientes en la cola que hayan más de 4 las probabilidades serán muy pequeñas, para ese cálculo haremos uso de la fórmula que usamos en el inciso b de este mismo ejemplo. P 0 = ( λ μ ) (λ μ )0 = ( )(00 50 )0 = ( 0.667)(0.667) 0 = =0.58% (lo cual es casi cero). Es decir es muy remoto o poco probable que pueda haber 0 clientes en la línea de espera. 3. Un lava carro puede atender un auto cada 5 minutos y la tasa media de llegadas es de 9 autos por hora. Obtenga las medidas de desempeño de acuerdo con el modelo M/M/. Además la probabilidad de tener 0 clientes en el sistema, la probabilidad de tener una cola de más de 3 clientes y la probabilidad de esperar más de 30 minutos en la cola y en el sistema Solución: Se conoce la siguiente información: λ= 9 clientes/hora (media de servicio a los clientes) = 0.5 clientes/minutos µ= 0.2 clientes/minutos (media de llegada de los clientes) a) Vamos calcular el factor de desempeño del sistema calculando ρ. ρ = λ cliente/minutos =0.5 = 0.75 = 75%. El sistema está ocupado el 75% del μ 0.20 cliente/minutos tiempo. O sea pasa un 25% ocioso. Es decir la probabilidad de tener 0 clientes en el sistema es cuando el sistema está vacío y eso puede ocurrir con una probabilidad del 25%. Su cálculo puede hacerse directamente con la fórmula: P 0 = (( λ 0 μ ) (λ μ ) = ( 0.5 ) = 0.25 = 25% 0.2 b) La probabilidad de tener una cola de más de 3 clientes P 0 = ( λ μ ) (λ μ ) 0 = (0.25)(0.75) 2 = 0.25 P = ( λ μ ) (λ μ ) = (0.25)(0.75) = P 2 = ( λ μ ) (λ μ ) 2 = (0.25)(0.75) 2 = P 3 = ( λ μ ) (λ μ ) 3 = (0.25)(0.75) 3 = MSc. Julio Rito Vargas A. Página 3

4 La probabilidad que haya más de tres clientes en el Sistema, implica que debemos conocer la Probabilidad que haya cero, uno, dos y tres clientes. La diferencia con. Será la probabilidad que hayan más de tres. P(Ls>3)= (P 0 + P + P 2 + P 3 )= - ( )= =0.364 c) La probabilidad de esperar más de 30 minutos en la cola. Primero calcularemos el tiempo promedio que un cliente espera en la cola. W q = λ = 0.5 = 0.5 μ(μ λ) 0.2( ) 0.0 cliente tiene que esperar en la cola) =5 minutos (es el tiempo promedio que un Ahora vamos a calcular tiempo (t) de espera sea mayor de 30 minutos. P(W q > t) = ρe μ( ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W q > 30) = ρe μ( ρ)t =(0.75) e 0.2( 0.75)30 =(0.75)e -,5 = (0.75)(0.223)= =0.67=6.7% (COMO PUEDE VER LA PROBABILIDAD ES BAJA) d) La probabilidad de esperar más de 30 minutos en el Sistema. P(W S > t) = e μ( ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W S > 30) = e μ( ρ)t = e 0.2( 0.75)30 =e -,5 = 0.223= =22.3% (COMO PUEDE VER LA PROBABILIDAD ES BAJA, pero es más alta que la probabilidad de que el tiempo promedio que un cliente espere más de 30 minutos en la cola). 4. Un promedio de 0 automóviles por hora llegan a un cajero con un solo servidor que proporciona servicio sin que uno descienda del automóvil. Suponga que el tiempo de servicio promedio por cada cliente es 4 minutos, y que tanto los tiempos entre llegadas y los tiempos de servicios son exponenciales. Conteste las preguntas siguientes: a. Cuál es la probabilidad que el cajero esté ocioso? b. Cuál es el número promedio de automóviles que están en la cola del cajero? (se considera que un automóvil que está siendo atendido no está en la cola esperando) c. Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco, (incluyendo el tiempo de servicio)? d. Cuántos clientes atenderá en promedio el cajero por hora? Solución: Se conoce la siguiente información: λ= 0 clientes/hora (media de llegada de los clientes) = /6 clientes/minutos MSc. Julio Rito Vargas A. Página 4

5 µ= clientes/4minutos (media de servicio de los clientes)=/4 cliente/minuto a) Por tanto ρ = λ = /6 = 2 = 66.67% factor de utilización del sistema. Es decir que el μ /4 3 sistema permanece ocioso el 33.33%. b) Cuál es el número promedio de automóviles que están en la cola del cajero? L q = λ μ(μ λ) = /6 /4( 4 6 ) = 4 3 =. 333 Puede haber 2 autos en la cola. c) Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco (incluyendo el tiempo de servicio)? Nos preguntan por el tiempo promedio que el cliente pasa en el sistema. W s. W S = μ λ = = 2 minutos pasa el cliente en el sistema. /2 = 4 /6 d) Cuántos clientes atenderá en promedio el cajero por hora? Si el cajero siempre estuviera ocupado, atendería un promedio de μ=5 clientes por hora. Según la solución encontrada en el inciso a (/4*60=5), el cajero está ocupado 2/3 del tiempo. Por tanto dentro de cada hora, el cajero atenderá un promedio de (2/3)(5)= 0 clientes. Esto es ρ*µ= 2/3 * 5 = 0 clientes. 5. En el departamento de emergencia de un hospital los pacientes llegan con una distribución de probabilidad Poisson a una media de 3 clientes por hora. El médico que está en dicho departamento los atiende con una frecuencia de servicio exponencial a una tasa media de 4 clientes por hora. Contrataría o no a un segundo médico? Determine: a. Razón de utilización del sistema (ρ). b. Probabilidad de que no se encuentren pacientes en el sistema. c. Probabilidad de que existan 3 pacientes en el sistema ( P 3 ). d. Tiempo total del cliente en el sistema (W s ). e. Tiempo total de espera por en la cola (Wq). f. EI número de pacientes en el sistema en un momento dado (L s ). g. EI número de pacientes en el sistema esperando por servicio (Lq). h. Probabilidad de que el cliente se espere más de hora en el sistema [W s > ] SOLUCION: Población = infinita Línea de espera =infinita Tasa de llegadas = λ= 3 pacientes/hora MSc. Julio Rito Vargas A. Página 5

6 Tasa de servicio= μ = 4 pacientes/hora a. ρ = λ = 3 = 0.75 = 75% utilización del sistema μ 4 b. ρ = 0.75 = 0.25 = 25% probabilidad que el sistema este ocioso o ningún paciente en el sistema. c. P 3 = ( λ μ ) (λ μ )3 = ( 3 4 ) (3 4 )3 = (0.25)( ) = 0.05 probabilidad que hayan 3 clientes en el sistema. d. W s = λw q = = = hora. μ λ 4 3 e. W q = λ = 3 = 0.75 hora (45 minutos) tiempo promedio de espera. μ(μ λ) 4(4 3) f. L s = λw s = 3 pacientes x hora = 3 pacientes en el sistema hora g. L q = λw q = 3 pacientes x0.75 hora = 2.25 pacientes en la cola hora h. P(W s > hora) = e μ( ρ)t = e 4( 0.75)() = Durante un período de 8 horas, llegaron 96 carros a la estación de servicio de Joe. Suponiendo que el tiempo entre llegadas tiene una distribución exponencial, use los datos proporcionados para estimar: a) El valor de la frecuencia de llegadas. b) El tiempo medio entre llegadas. c) La razón media de llegadas Solución: Población = infinita Línea de espera =infinita Tasa de llegadas constante = λ Tasa de servicio constante= μ a. Sabemos que 96 carros llegan en 8 horas, necesitamos saber cuántos carros llegan en una hora. Para obtener la tasa de llegada por hora. 96 carros λ = = 2 carros/hora 8 horas b. Tiempo medio entre llegadas. Esto se saca haciendo: la inversa de la tasa de llegada. λ = = horas 2 c. La razón media de llegada λn = λ = 2 carros hora MSc. Julio Rito Vargas A. Página 6

7 7. Una computadora procesa los trabajos que se le asignan sobre la base "primero en llegar primero ser atendido (FIFO=PEPS). Los trabajos llegan con una distribución Poisson con promedio de tiempo entre llegadas de cinco minutos. En el procesamiento de los trabajos consiste en que ningún trabajo pase más de seis minutos promedio en el sistema. Qué tan rápido debe de trabajar el procesador para cumplir con este objetivo? Solución: Datos: λ = 5 min min (60 hora ) = 60 5 Entonces: λ= 2 trabajos/hora W s : tiempo promedio que tardan los trabajos en el sistema. W s =6 min =6/60 = 0. hora Nos piden el tiempo del servicio μ? Población = infinita Línea de espera =infinita Tasa de llegadas constante =λ Tasa de servicio constante= μ W s = μ λ W s (μ λ) = μ λ = W s μ = W s λ μ = μ = μ = 22 trabajos/hora; el procesador debe sacar 22 trabajos por hora. Para que los trabajos tarden en promedio 6 minutos en el sistema. 8. Actualmente una gasolinera tiene 2 bombas y está considerando agregar una tercera. Los vehículos llegan al sistema con un promedio de cada 0 minutos, cada vehículo requiere de un promedio de 5 minutos para ser atendido. Supóngase que los vehículos llegan de acuerdo con una distribución Poisson y que el tiempo necesario para prestar el servicio se distribuye en forma exponencial. a) Determine la razón de utilización del sistema. ( ρ ) b) Cuál sería el efecto sobre la línea de espera si se agrega una tercera bomba? MSc. Julio Rito Vargas A. Página 7

8 c) Cómo se evaluarían los costos en esta situación? Solución: Población = infinita Línea de espera =infinita Tasa de llegadas constante =λ Tasa de servicio constante= μ Datos: min x60 λ = 6 cliente/hora hora λ = 0 μ = 5 minx60 μ =2 clientes/hora En este problema hay que notar que son dos servidores (s=2) que están atendiendo por lo que la fórmula para calcular la utilización del sistema será: a) ρ = λ = 6 = 0.25 = 25% El sistema está utilizado solo en un 25% o sea pasa sμ 2x2 ocioso el 75% del tiempo. b) Cuál sería el efecto sobre la línea de espera si se agrega una tercera bomba? Calcularemos L q para conocer el número de clientes en la cola. W q = λ = 6 = 6 μ(μ λ) 2(2 6) 2(6) L q =λw q = 6*0.0833= 0.5 cliente. = horas=5min (tiempo de espera en la cola) En relación a la pregunta c) no se justifica la instalación de nueva bomba, dado que el sistema está subutilizado, lo podemos ver en el tiempo de espera y el número de cliente en el sistema en un momento dado. En promedio un cliente espera 5 minutos en la cola y nunca hay más de un cliente en la cola. 9. Considere una oficina de inmigración. Suponiendo que el modelo básico es una aproximación razonable de la operación, recuerde que si la agente estuviese ocupada todo el tiempo procesaría 20 ingresos durante su turno de 8 horas. Si a su oficina llega un promedio de un ingreso cada 6 minutos, encuentre: a) El número esperado en el sistema b) El número esperado en la fila c) El tiempo previsto de línea de espera d) El tiempo previsto de espera e) La probabilidad de que el sistema este vacío Solución: Población = infinita Línea de espera =infinita Tasa de llegadas constante =λ Tasa de servicio constante= μ MSc. Julio Rito Vargas A. Página 8

9 Datos: /λ = 6 minutos / 60 hora λ = 0 /hora μ = 20/8 =5 clientes/hora a) L s =λw s = horas/personas =2 personas b) L q =λw q = horas/personas =.33 personas c) W s = = = =0.2 horas/persona μ λ d) W q = λ = 0 = = horas/personas μ(μ λ) 5(5 0) Suponga que todos los dueños de automóvil acuden a la gasolinera cuando sus tanques están a la mitad. En el momento actual llega un promedio de 7.5 clientes por hora a una gasolinera que tiene una sola bomba. Se requiere un promedio de 4 minutos para servir a un automóvil. Suponga que los tiempos entre llegadas y los tiempos de servicios son exponenciales. a) Calcule L s y W s para los tiempos actuales. b) Suponga que hay un déficit de gasolina y que hay compras de pánico. Para modelar este fenómeno, suponga que todos los dueños de automóviles compran ahora gasolina cuando sus tanques tienen ¾ de combustible. Como cada dueño pone ahora menos gasolina en el tanque cada vez que acude a la gasolinera, supongamos que el tiempo de servicio promedio se reduce a 3 minutos y un tercio. Qué tanto afectan a L y W las compras de pánico? Solución: Tenemos un sistema M/M/ con λ= 7.5 automóviles por hora y μ=5 (60/4) automóviles por hora. Por lo tanto W =50% Tiempo que la bomba pasa ocupada L s 0.50 Promedio de clientes presentes en el sistema s L s 0.3 horas 7.5 (Tiempo promedio que un cliente pasa en la cola). Por tanto bajo estas circunstancias todo está bajo control. λ=2(7.5)= 5 automóviles por hora(esto se infiere porque cada dueño llenará su tanque dos veces). Ahora MSc. Julio Rito Vargas A. Página 9

10 5 5 Automóviles por hora. = =83.3% Entonces. 8 6 L s 5/ 6 5 5/ 6 momento dado Automóviles estarán como máximo en el sistema en un Ls Ws sistema hora 20 min Esto es el tiempo que los clientes tardan en el MSc. Julio Rito Vargas A. Página 0

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor

Más detalles

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE INVESTIGACIÓN DE OPERACIONES II INGENIERIA INDUSTRIAL E INGENIERIA DE SISTEMAS V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas Maestro

Más detalles

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede

Más detalles

TEORIA DE COLAS, FENOMENOS DE ESPERA

TEORIA DE COLAS, FENOMENOS DE ESPERA Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino

Más detalles

Análisis de Decisiones II

Análisis de Decisiones II Tema 14 Distribución de llegadas Poisson, distribución de servicio Exponencial, varios servidores, servicio PEPS, población y cola infinita Objetivo de aprendizaje del tema Al finalizar el tema serás capaz

Más detalles

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Procesos Estocásticos de Tiempo Contínuo Práctico Ejercicio 1 Sean X e Y variables

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema Tema 11 Conceptos básicos de Teoría de Colas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar en qué consiste la Teoría de Colas. D.R. Universidad TecMilenio 1 Introducción

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS SIMULACIÓN DE SISTEMAS UNIVERSIDAD ALAS PERUANAS FILIAL- ICA Ing. Las LINEAS DE ESPERA, FILAS DE ESPERA o COLAS, son realidades cotidianas: Personas esperando para una caja en un banco, Estudiantes esperando

Más detalles

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística El Objetivo La teoría de colas o líneas de espera, procura el estudio riguroso del fenómeno (muy común en estos tiempos)

Más detalles

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB PROBLEMA 1. El Banco Nacional de Occidente piensa abrir una ventanilla de servicio en automóvil para servicio a los clientes. La gerencia estima que los

Más detalles

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software 3 Diseño del Software Traffic Analyzer En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software que analiza el tráfico en redes de telefonía y computadoras, denominado Traffic

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

Unidad V: Líneas de Espera

Unidad V: Líneas de Espera Unidad V: Líneas de Espera 5.1 Definiciones, características y suposiciones El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que el cliente

Más detalles

Ejercicios de Teoría de Colas

Ejercicios de Teoría de Colas Ejercicios de Teoría de Colas Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Demuestra que en una cola M/M/1 se tiene: L = ρ Solución. L = = = = = ρ np n nρ n (1 ρ) nρ n n=1 ρ n ρ

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN TEORIA DE COLAS: Líneas de Espera Claro Ana Milena, Cardona Luz Dary, Ruiz Lina María, Gómez Juan Fernando, Estudiantes Ingeniería Industrial Universidad Católica de Oriente. Mayo 21 de 2011. Resumen:

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

BLOQUE V Estadística y probabilidad

BLOQUE V Estadística y probabilidad Pág. de Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,2; 0,2; ; Responde razonadamente

Más detalles

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV PROBLEMAS RESUELTOS DE CADENAS DE MARKOV TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés I. El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un

Más detalles

SISTEMA CON UN SERVIDOR

SISTEMA CON UN SERVIDOR TALLER 6 : Problemas de Líneas de Espera. 1.SISTEMA CON UN SERVIDOR. Una compañía estatal tiene un numero de estaciones para el pesado de camiones a lo largo de una gran autopista, para verificar que el

Más detalles

GUIA DIDACTICA GENERAL. Teoría de Colas y Simulación. Autor (es): Moisés Peralta

GUIA DIDACTICA GENERAL. Teoría de Colas y Simulación. Autor (es): Moisés Peralta UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO Decanato de Ciencias y Tecnología GUIA DIDACTICA GENERAL Teoría de Colas y Simulación Autor (es): Moisés Peralta Barquisimeto, Noviembre 2011 2 UNIVERSIDAD

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA INVESTIGACIÓN DE OPERACIONES II CADENAS DE MARKOV CADENAS DE MARKOV ERGODICAS CADENA REGULAR DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE MÉTODO ANALÍTICO CADENAS DE MARKOV ABSORVENTES TEORIA DE

Más detalles

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q 52 CAPÍTULO 3. SISTEMAS DE ESPERA Luego: P {N q = n N q > 0} = P n+1 2 = (1 ) n 1, n = 1, 2, (3.33) Nótesequelaprobabilidadqueexistan N probabilidadgeométricaconparámetro n 1,locualesigualaladistribuciónprobabilidad

Más detalles

Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó

Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó Fecha de Entregable 1: 7 de octubre de 2013-12 horas Fecha de Entregable 2 y 3: Lunes 21 de octubre de 2013-12 horas Fecha de Entregable

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2.

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2. ESTUDIO DE OPERACIONES URBANAS MATERIAL REUNIDO POR JAMES S. KANG OTOÑO 2001 Soluciones trabajo 4 3/10/2001 1. Problema 4.12 LO (Pinker, 1994; Kang, 2001) El aeropuerto se puede modelar como un sistema

Más detalles

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 5: Teoría de colas Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario Conceptos básicos Cola M M Cola M M c Cola M M k Redes de colas Redes de

Más detalles

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema Tema 15 Solución de problemas de líneas de espera mediante WinQSB Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar las características y funcionalidades que ofrece WinQSB

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

2 Teoría de colas o líneas de espera

2 Teoría de colas o líneas de espera 2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

AdministracióndelasOperaciones. Roberto CARRO PAZ. Daniel GONZÁLEZ GÓMEZ

AdministracióndelasOperaciones. Roberto CARRO PAZ. Daniel GONZÁLEZ GÓMEZ AdministracióndelasOperaciones Cualquiera que haya tenido que esperar frente a un semáforo, en la cola de un banco o de un restaurante de comidas rápidas, ha vivido la dinámica de las filas de espera.

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

PROBLEMAS RESUELTOS DE TRANSPORTES.

PROBLEMAS RESUELTOS DE TRANSPORTES. PROBLEMAS RESUELTOS DE TRANSPORTES. Prof.: MSc. Julio Rito Vargas Avilés Inv. Operaciones I Ejemplo 1 (Modelo de transporte estándar - equiulibrado) MG Auto Company tiene plantas en Los Ángeles, Detroit

Más detalles

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A)

Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) aprenderaprogramar.com Módulo mod_banners para insertar y visualizar anuncios o publicidad (banners) en Joomla. Contador. (CU00446A) Sección: Cursos Categoría: Curso creación y administración web: Joomla

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Poisson, Exponencial y Uniforme Ejercicio. Se dispone de un sistema formado por dos componentes similares

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV Cadenas de Markov. Ejercicios resueltos Página EJERCICIOS RESUELTOS DE CADENAS DE MARKOV ) En un pueblo, al 90% de los días soleados le siguen días soleados, y al 80% de los días nublados le siguen días

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 06 Elasticidad de la demanda, el excedente

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Subsecretaria de Fomento de la Sociedad de la Información y Gobierno en Línea - SFSIGL

Subsecretaria de Fomento de la Sociedad de la Información y Gobierno en Línea - SFSIGL Subsecretaria de Fomento de la Sociedad de la Información y Gobierno en Línea - SFSIGL Dirección de Fomento de la Industria y Servicios para la Sociedad de la Información - DFISSI Manual de la Herramienta

Más detalles

Qué es Alerta Ciudadana?

Qué es Alerta Ciudadana? Qué es Alerta Ciudadana? El Sistema de Alerta Ciudadana consiste en un módulo de alta seguridad diseñado y fabricado en México para ser instalado en la vía pública o en casa habitación; único en su tipo

Más detalles

Estructura de datos y de la información Boletín de problemas - Tema 7

Estructura de datos y de la información Boletín de problemas - Tema 7 Estructura de datos y de la información Boletín de problemas - Tema 7 1. Un concesionario de coches tiene un número limitado de M modelos, todos en un número limitado de C colores distintos. Cuando un

Más detalles

Adivinanza o logaritmos?

Adivinanza o logaritmos? Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN ANÁLISIS DE LOS PROCESOS

GERENCIA DE OPERACIONES Y PRODUCCIÓN ANÁLISIS DE LOS PROCESOS GERENCIA DE OPERACIONES Y PRODUCCIÓN ANÁLISIS DE LOS PROCESOS MIDIENDO LA PRODUCTIVIDAD DESCRIBIENDO EL PROCESO Diagrama de proceso: describe las etapas o actividades principales de un proceso Sus elementos

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

GUÍA RÁPIDA DE PUNTO DE VENTA. SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT. Versión 8.0

GUÍA RÁPIDA DE PUNTO DE VENTA. SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT. Versión 8.0 GUÍA RÁPIDA DE PUNTO DE VENTA SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT Versión 8.0 National Soft de México Guía rápida para punto de venta En este documento

Más detalles

Tema 1 Introducción a la Estadística

Tema 1 Introducción a la Estadística Introducción a la Estadística 1 Objetivo de la Estadística El tratamiento estadístico de los datos requiere el uso de computadoras. Este material de trabajo proporciona numerosos ejemplos de salidas de

Más detalles

ANÁLISIS DE LA DEMANDA EN LA CONSULTA EXTERNA DE LA RED HOSPITALARIA NACIONAL Instituto de Cancerología

ANÁLISIS DE LA DEMANDA EN LA CONSULTA EXTERNA DE LA RED HOSPITALARIA NACIONAL Instituto de Cancerología _ ANÁLISIS DE LA DEMANDA EN LA CONSULTA EXTERNA DE LA RED HOSPITALARIA NACIONAL Instituto de Cancerología Por MSc. Jorge Quijada, jequijad@yahoo.com RESUMEN Tal como indica el informe, la Facultad de Ingeniería

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

El método infalible para ganar a la ruleta en 21 días. Llame YA!

El método infalible para ganar a la ruleta en 21 días. Llame YA! El método infalible para ganar a la ruleta en 21 días. Llame YA! Santiago Figueira Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación Charla de Borrachos 2005

Más detalles

Estadística EIAE (UPM) Estadística p. 1

Estadística EIAE (UPM) Estadística p. 1 Ö Ó ÓÒØ ÒÙÓ ÑÓ ÐÓ p. 1 Ejercicio 1 A una gasolinera llegan, en media, 3 coches por minuto. Calcular la probabilidad de que a) En 1 minuto lleguen dos coches. b) En 1 minuto lleguen al menos dos coches.

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

LINEAS DE ESPERA CAPITULO 2 LECTURA 6.2. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 2.

LINEAS DE ESPERA CAPITULO 2 LECTURA 6.2. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 2. LECTURA 6.2 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 2 LINEAS DE ESPERA 2.1 INTRODUCCIÓN Una línea de espera es el efecto resultante en un sistema

Más detalles

Por qué tomar muestras? Si queremos conocer una población, Por qué no tomar una muestra de toda la población?, Por qué no hacer un censo?

Por qué tomar muestras? Si queremos conocer una población, Por qué no tomar una muestra de toda la población?, Por qué no hacer un censo? Página 1 de 8 CAPÍTULO 2: MUESTREO En el capítulo anterior hablamos de que para tomar decisiones en Estadística primero debemos formular una hipótesis a partir de la teoría del investigador. Una vez formulada

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Manual de Usuario del

Manual de Usuario del Manual de Usuario del Sistema Informático de Contraloría Social Abril de 2009 1 INDICE Página 1.-Implementación del Sistema 3 2.-Para iniciar una Sesión 3 3.-Funcionalidad General 4 4.-Módulos que Integran

Más detalles

Escribimos y revisamos nuestros afiches

Escribimos y revisamos nuestros afiches PRIMER Grado - Unidad 3 - Sesión 27 Escribimos y revisamos nuestros afiches Para qué usamos el lenguaje escrito cuando escribimos afiches? Para que el niño use el lenguaje escrito con función apelativa

Más detalles

Aplicaciones clientes servidor y sockets

Aplicaciones clientes servidor y sockets Aplicaciones clientes servidor y sockets Ejercicio 1. Desarrollar un servidor que permita obtener la hora, la fecha y el día de la semana en la que cae un dia determinado. Diseñar y desarrollar el cliente

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

JUEGO DE NEGOCIOS BHP BILLITON PAMPA NORTE

JUEGO DE NEGOCIOS BHP BILLITON PAMPA NORTE JUEGO DE NEGOCIOS BHP BILLITON PAMPA NORTE Facilita: 1 Juego de Negocios Bhp Billiton Pampa Norte Introducción El lugar donde se desarrolla la simulación, es un gran mercado donde se instalan empresas

Más detalles

Manual Registro de Productores. Pantalla de Ingreso

Manual Registro de Productores. Pantalla de Ingreso Contenido Manual Registro de Productores... 3 Pantalla de Ingreso... 3 Pantalla de Ingreso de Registros... 4 Pantalla de Listado de Registros... 7 Opciones del Menú.... 10 Manual Registro de Productores

Más detalles

Redes de Comunicaciones

Redes de Comunicaciones Redes de Comunicaciones Ejercicios Tema 3. Teletráfico. Dimensionado de Sistemas Ramón Agüero Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY-

Más detalles

Ejercicios resueltos de Programación Lineal

Ejercicios resueltos de Programación Lineal Investigación Operativa I 009 Ejercicios resueltos de Programación Lineal Mauricio estrella Erika Beatriz Palacin Palacios Pajuelo Daniel PREGUNTA Ingeniería de Sistemas y Computación UNDAC 3..6 la empresa

Más detalles

Capitulo V Administración de memoria

Capitulo V Administración de memoria Capitulo V Administración de memoria Introducción. Una de las tareas más importantes y complejas de un sistema operativo es la gestión de memoria. La gestión de memoria implica tratar la memoria principal

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales

Más detalles

Remuneración de la Actividad de Comercialización de Energía Eléctrica a Usuarios Regulados

Remuneración de la Actividad de Comercialización de Energía Eléctrica a Usuarios Regulados Metodología para la Remuneración de la Actividad de Comercialización de Energía Eléctrica a Usuarios Regulados Cartilla Ministerio de Cultura República de Colombia Tabla de Contenido 3-4. 5. 6. 7. 8. 9.

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

SUBIR ARCHIVOS CON FTP. TRABAJAR EN UN SERVIDOR REMOTO. CREAR UNA PÁGINA WEB CON PROGRAMACIÓN PHP. (CU00814B)

SUBIR ARCHIVOS CON FTP. TRABAJAR EN UN SERVIDOR REMOTO. CREAR UNA PÁGINA WEB CON PROGRAMACIÓN PHP. (CU00814B) APRENDERAPROGRAMAR.COM SUBIR ARCHIVOS CON FTP. TRABAJAR EN UN SERVIDOR REMOTO. CREAR UNA PÁGINA WEB CON PROGRAMACIÓN PHP. (CU00814B) Sección: Cursos Categoría: Tutorial básico del programador web: PHP

Más detalles

Tenga en cuenta que, para utilizar este servicio, debe previamente:

Tenga en cuenta que, para utilizar este servicio, debe previamente: Régimen Simplificado Ganancias Personas Físicas Quienes pueden utilizarlo? Quienes perciban ingresos del trabajo en relación de dependencia, jubilaciones y pensiones. Los Actores que perciban sus ingresos

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

REUNION DE COORDINACION 8-6-2015

REUNION DE COORDINACION 8-6-2015 REUNION DE COORDINACION 8-6-2015 1. Ante el elevado número de horas extras que se están realizando mensualmente, además de comunicarle nuestro malestar por ello, le queremos recordar, que dentro de la

Más detalles

CAPITULO V CONCLUSIONES Y RECOMENDACIONES

CAPITULO V CONCLUSIONES Y RECOMENDACIONES CAPITULO V CONCLUSIONES Y RECOMENDACIONES 5.1 Conclusiones En base a la investigación realizada a la empresa de telefonía Telmex sucursal Cholula, Puebla se puede concluir lo siguiente: Como se ha mencionado

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

Su Programa de Mantenimiento Se Ganaría la Lotería?

Su Programa de Mantenimiento Se Ganaría la Lotería? Su Programa de Mantenimiento Se Ganaría la Lotería? Escrito por: Bonnie Biegel Control de Calidad El noticiero de las 10 de la noche ha terminado, y una vez más usted no tiene el boleto de lotería ganador,

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

Para aquellos que tengan conocimientos de Access es lo más parecido a una consulta de referencias cruzadas, pero con más interactividad.

Para aquellos que tengan conocimientos de Access es lo más parecido a una consulta de referencias cruzadas, pero con más interactividad. Las tablas dinámicas Crear una tabla dinámica Una tabla dinámica consiste en el resumen de un conjunto de datos, atendiendo a varios criterios de agrupación, representado como una tabla de doble entrada

Más detalles

Manual de Procedimientos. Coordinación Estatal de Bibliotecas del Estado de Baja California Sur.

Manual de Procedimientos. Coordinación Estatal de Bibliotecas del Estado de Baja California Sur. Manual de s. Bibliotecas del Estado de Baja California Sur. La Paz, Baja California Sur, del Manual de s. Bibliotecas del Estado de Baja California Sur. Vo. Bo. ELABORÓ Coordinadora Estatal de Bibliotecas

Más detalles

TALLER N 5 DE ESTADÍSTICA

TALLER N 5 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 5 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

NOM-023-STPS-2002 TRABAJOS EN MINAS Condiciones de Seguridad y Salud en el Trabajo. Capítulo 7 Análisis de Riesgos Potenciales

NOM-023-STPS-2002 TRABAJOS EN MINAS Condiciones de Seguridad y Salud en el Trabajo. Capítulo 7 Análisis de Riesgos Potenciales NOM-023-STPS-2002 TRABAJOS EN MINAS Condiciones de Seguridad y Salud en el Trabajo Capítulo 7 Análisis de Riesgos Potenciales Ing. Guillermo Pardo Castañeda Gerente General de Seguridad, Minera Carbonífera

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA División de Ciencias Económicas y Administrativas Licenciatura en Materia: Estadísticas I Semestre 2013-2 Prof. Dr. Francisco Javier Tapia Moreno. Anteproyecto: Determinación del

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

Programación de Aplicaciones Tarea 2 Curso 2015

Programación de Aplicaciones Tarea 2 Curso 2015 Programación de Aplicaciones Tarea 2 Curso 2015 Información Administrativa La tarea comienza el lunes 14 de setiembre y finaliza el lunes 19 de octubre. La tarea constará de múltiples entregas parciales

Más detalles

Conceptos Generales. En el mercado existe una amplia variedad de software para simulación de sistemas.

Conceptos Generales. En el mercado existe una amplia variedad de software para simulación de sistemas. En el mercado existe una amplia variedad de software para simulación de sistemas. Un buen número de ellos trabajan en entornos duros, en los que la definición de los modelos se realiza mediante herramientas

Más detalles

IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios

IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios Profesores: Andrés Weintraub, Fabián Medel, Rodrigo Wolf Auxiliares: Juan Neme, Matías Siebert, Paulina Briceño, Rodrigo Arriagada IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios Modelos: 1.- Demanda

Más detalles
Sitemap