1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial."

Transcripción

1 TEMA 1 1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial. 2. Una gota de agua de diámetro 0,5mm tiene una presión en su interior es mayor que la atmosférica en 5, kg f /cm 2 ; determinar su tensión superficial. 3. El árbol de una máquina tiene 0,10m de diámetro, se mantiene en posición vertical mediante un soporte cojinete de 0,25m de longitud. La separación radial entre el árbol y el soporte es de 0,1mm, y va recubierto de un lubricante de 0,125Poises de viscosidad. La velocidad de giro del árbol es de 240rpm. Calcular: Par resistente producido en el soporte cojinete Potencia disipada en el rozamiento 4. Determinar la variación de la fuerza para mover un pistón de un motor diesel si cuando arranca el aceite está a 0ºC y a régimen a 120ºC; sabiendo que la viscosidad dinámica varía de 1, a kg s/m Suponiendo que el perfil de velocidades del flujo de la figura es parabólico, calcular: El gradiente de velocidad para y =:0, -25mm y -50mm; medidos desde la superficie libre El esfuerzo cortante si la viscosidad del fluido es de Pa s. 6. Suponiendo el mismo fluido con idéntico perfil de velocidades, pero fluyendo por un tubo circular de 20cm de diámetro y 100m de longitud, se pide: Calcular la energía disipada por rozamiento 7. Un émbolo de 100kg se mueve por gravedad en el interior de un cilindro vertical. El espacio entre ambos está relleno de aceite (0,5mm de espesor) de viscosidad 8, Nw s /m 2. Determinar la velocidad de descenso Determinar la viscosidad del aceite si el émbolo tarda 10 s en recorrer 1m 8. A una profundidad de 9km la presión en el océano es de 1.000bar. Si la densidad en la superficie es de 1,025kg/dm 3 y el módulo elástico medio de bar, calcular la densidad del fondo. Problemas Tema 1 Carlos J Renedo - 1

2 TEMA 2 1. Un cilindro cierra un agujero rectangular en un depósito de 0,9m de diámetro y a una profundidad de 2,7metros. Calcular con qué fuerza queda presionado el cilindro contra el fondo. 2. La tapa semiesférica del depósito de agua de la figura puede girar libremente en el punto O. Se desea retener el agua del depósito por medio de dos tornillos situados en el punto A que impidan el giro de la tapa. Dimensionar dichos tornillos suponiéndolos de un acero con un límite elástico de kg/cm 2. Nota : Despreciar el peso de la tapa. Datos : R = 0,25m ; H = 1.00m 3. Estudiar la estabilidad de un muro de contención de hormigón de peso específico γ como el de la figura: 4. En la figura adjunta el cilindro tiene 2,4m de diámetro y un peso de 250kg. Este reposa sobre el fondo de un depósito de 1m de longitud. Se vierte agua en la parte izda y aceite en la dcha hasta profundidades respectivas de 0,6m y 1,2m. Calcular el valor de la masa m para que el cilindro no flote y la fuerza horizontal para que no se deslice. m Problemas Tema 2 Carlos J Renedo - 2

3 TEMA 3 1. Una manguera de 25mm de diámetro termina en una boquilla con un orificio de 10mm. Si la velocidad media del agua en la manguera es de 0,75m/s, calcular: El caudal La velocidad a la salida 2. Un aceite de densidad 800kg/m 3 fluye por una tubería ascendente (Δcota 2,75m) y de sección decreciente: diámetro inicial 15cm, final 10cm. En el inicio la presión es de 2.105kPa y la velocidad 1,2m/s. Despreciando las pérdidas de carga calcular: La velocidad en la salida La presión en la salida 3. Por un conducto cuadrado de 10cm de lado fluye un gas de densidad 1,09kg/m 3 a una velocidad de 7,5m/s. Si la sección del conducto cambia a 25cm de lado y la velocidad cae a 2,02m/s, calcular el caudal másico y la densidad en el segundo tramo. 4. Cual es la diferencia de presiones, en unidades del sistema internacional, entre los puntos A y B de la figura. 5. Por una tubería horizontal de diámetro 20cm fluye agua, hay un vénturi de diámetro 10cm, en el que con una columna de mercurio se mide un desnivel de 9cm (ρhg = kg/m 3 ). Calcular: Las velocidades en la tubería y el estrechamiento El caudal de agua 6. Cuando está cebado y circula agua por la tubería de 1 cm de diámetro de la figura, y despreciando las pérdidas en la tubería, calcular: El caudal de salida La presión en el punto más alto del sifón La altura máxima del sifón Problemas Tema 3 Carlos J Renedo - 3

4 7. En la aspiración de la bomba la presión es de -180 mmhg (Dr Hg = 13,6). Si toda la tubería es de 100 mm de diámetro, y el caudal de descarga es de 0,03 m 3 /s de aceite (Dr = 0,85), determinar: la altura total en el punto A con relación a la cota de referencia que pasa por la bomba 8. En un Venturi instalado en posición vertical, la lectura del manómetro diferencial es de 35,8cm de Hg (Dr Hg = 13,6). Determinar el caudal de agua si se desprecian las pérdidas por rozamiento en el venturi. 9. Una tubería que transporta aceite de Dr = 0,877 pasa de 15cm de diámetro en el pto A a 45 en el pto B. La tubería desciende 3,66m de A a B, y las presiones son de 91kPa y 60,3kPa en A y B respectivamente. Si el caudal es de 0,146m 3 /s. Justificar cual es la dirección del flujo Determinar la pérdida de carga en la dirección del flujo. 10. Una tubería que transporta aceite de Dr = 0,9 pasa de 40cm de diámetro en el pto A a 20 en el pto B. La tubería asciende 2 m de A a B, y las presiones son de 90kPa y 50kPa en A y B respectivamente. Si el caudal es de 0,2m 3 /s. Justificar cual es la dirección del flujo Determinar la pérdida de carga en la dirección del flujo. 11. A través de una turbina de 1m de altura circulan 0,214m 3 /s de agua, siendo las presiones a la entrada y salida de 147,5kPa y -34,5kPa respectivamente (secciones de 300 y 600mm). Determinar: La potencia comunicada por la corriente a la turbina. 12. La turbina anterior extrae 48,8kW, siendo las presiones a la entrada y salida de 141,3kPa y -33,1kPa respectivamente. Determinar el caudal de agua. Problemas Tema 3 Carlos J Renedo - 4

5 TEMA 4 1. Determinar la velocidad crítica en una tubería de 20mm de diámetro para: a) gasolina a 20ºC, ν = 6, m 2 /s b) agua a 20ºC, ν = 1, m 2 /s 2. Determinar el tipo de flujo que tiene lugar en una tubería de 30cm de diámetro cuando fluye a 1m/s a) agua a 15ºC, ν = 1, m 2 /s b) fueloil a 15ºC, ν = 2, m 2 /s 3. Para un flujo en régimen laminar, Qué diámetro de tubería sería necesario para transportar 0,0057m 3 /s de fueloil a 41ºC (ν = 6, m 2 /s)? 4. Un caudal de 44l/s de aceite de viscosidad absoluta 0,101Nw s/m 2 y densidad relativa 0,850 está circulando por una tubería de fundición de 30cm de diámetro, rugosidad de 0,05mm y 3.000m de longitud. Cuál es la pérdida de carga? 5. Se pide determinar el factor de fricción de una tubería de 20cm de diámetro y rugosidad 0,005cm, sabiendo que cuando se envía un caudal de agua de 0,18m 3 /s entre dos puntos situados a la misma cota y separados 150m se lee en un manómetro diferencial 1,96m de columna de Hg (Dr = 13,6). 6. Fluye fueloil (ν = 4, m 2 /s, Dr = 0,918) por una tubería horizontal de acero de 15cm de diámetro, rugosidad de 0,07mm y 900m de longitud. La presión inicial es de 11kg/cm 2 y la final de 0,35kg/cm 2. Cuál es el caudal en l/s? 7. Desde un punto elevado 82,65m se bombea gasolina (γ = 7,05kN/m 3, μ = 2, Pa s) con una presión de 2,5kPa por una tubería de 965,5m de longitud equivalente, hasta otro punto elevado 66,66 m. Si la rugosidad de la tubería es 0,5mm Cuál debe ser el diámetro para descargar 0,1m 3 /s? 8. Se pide determinar el caudal de fuel oil que se bombea por una tubería de 15cm de diámetro, rugosidad 0,006cm y longitud equivalente 1200m, si esta sube un desnivel de 15 m, se bombea fueloil a 21ºC; si la presión disponible al inicio es de 8,6kg/cm 2 y la necesaria al final de 3,4kg/cm 2 (ν = 3, m 2 /s, Dr = 0,854). Problemas Tema 4 Carlos J Renedo - 5

6 9. Se envía aceite (ν = 2, m 2 /s, Dr = 0,84) desde un depósito presurizado por una tubería de 15cm de diámetro, rugosidad 0,012cm y 150m de longitud. a qué presión se debe someter el depósito para que circulen 13l/s 10. Un grupo contraincendios se alimenta de un depósito elevado 10m. La distribución de la tubería es anillo de 20cm de diámetro y rugosidad de 0,2mm. Si se abre una boca que necesita una presión para funcionar de 1mca en punto cuya longitud equivalente por el ramal 1 es de 100m, y por el ramal 2 de 300m; calcular el caudal por cada rama. (ν = 10-6 m 2 /s), despreciar la pérdida de carga en la bajante 11. Un grupo contraincendios que se alimenta de un depósito abierto suministra agua por una tubería en anillo de rugosidad 0,5mm. Si se abre una boca que necesita una presión para funcionar de 1mca en punto cuya longitud equivalente por el ramal 1 es de 100m (diámetro R1 = 20cm), y por el ramal 2 de 350m (diámetro R2 = 30cm); calcular la presión necesaria para que el caudal sea de 0,5m 3 /s. (ν = 10-6 m 2 /s), 12. Determinar la distribución de caudales para las tuberías de entrada y salida de la figura. (datos en l/s, n = 2) Problemas Tema 4 Carlos J Renedo - 6

7 TEMA 5 1. Por una tubería de acero de módulo de elasticidad (E T = 2, N/m 2 ) tiene un espesor de 7mm y un diámetro interior de 900mm circula agua a 15ºC cuya compresibilidad es K F = 4, m 2 /N. Calcular: La celeridad de propagación de las ondas producidas por un golpe de ariete 2. Al final de una tubería de acero (E T = Nw/cm 2 ) de diámetro interior 600mm y espesor 10mm por la que circula agua (E F = Nw/cm 2 ) a 2,5m/s se instala una válvula. Si ésta se cierra instantáneamente calcular: La velocidad de propagación de la onda de presión La sobrepresión producida por el golpe de ariete 3. Una válvula cierra en 4s una tubería de 2.500m y 800mm de diámetro por la que circulan 0,35m 3 /s de líquido, en el que la celeridad de propagación de las ondas, c, es de 1.000m/s. Calcular: La sobrepresión producida por el golpe de ariete 4. Por una tubería de 1.500m de longitud y 350mm de diámetro circulan 250l/s de agua a una presión de 80m. Considerar la celeridad de propagación de las ondas c de 1000m/s calcular: El tiempo que debe durar el cierre de una válvula situada en su extremo para que la sobrepresión producida por el golpe de ariete no supere el 50% 5. Una bomba centrífuga aspira agua a 10ºC de un depósito abierto por una tubería de 100m de longitud y 200mm de diámetro. El eje de la bomba se encuentra 4m por encima del nivel del agua en el depósito. La bomba impulsa por una tubería de 100mm de diámetro y 1.000m de longitud a otro depósito cuyo nivel está 50m por encima del nivel del depósito de aspiración. Considerando el coeficiente λ de pérdidas de carga de 0,025 y que las longitudes de tubería son las equivalentes (incluyen las de los accesorios de las tuberías) calcular: La potencia que debe comunicar la bomba para que el caudal sea de 8 l/s Máximo caudal que se puede bombear (para que no se produzca cavitación, T = 10ºC, p s = 0,01227bar) Máximo caudal que se podría bombear si la sección de la tubería de aspiración fuera de 100mm. Problemas Tema 5 Carlos J Renedo - 7

8 TEMA 6 1. Un turbina produce 93kW bajo un salto de 64m, calcular Cuanto se incrementa su velocidad si se instala en un salto de 88m Cual sería la potencia desarrollada si se mantiene el rendimiento 2. Un ventilador debe suministrar 5.000m 3 /h, en sus condiciones normales de presión y T (ρ = 1,2kg/m 3 ) suministra una presión de 20mm.c.a. y consume 480W; calcular: El punto de trabajo si se le instala en una cámara de refrigeración a -35ºC (ρ = 1,48 kg/m 3 ) 3. Una bomba girando a 1.750rpm tiene una curva como la de la figura. La bomba impulsa agua a través de una tubería de 15cm de diámetro y 450m de largo con un factor de fricción λ = 0,025. La carga estática es de 10m y las pérdidas menores se pueden despreciar. Calcular el punto de funcionamiento de la bomba 4. Una bomba centrífuga gira a 1.500rpm. La superficie de entrada del agua al rodete es de 0,03m 2, y la de salida 0,04m 2. El diámetro del rodete a la entrada es de 0,3 m y a la salida de 0,5m. Los ángulos de los álabes son: α 1 = 90º; β 1 = 22º; β 2 = 15ºC Calcular los triángulos de velocidades La altura teórica de impulsión La potencia teórica de impulsión 5. Una bomba de émbolo de doble efecto (d embolo = 250 mm, d vastago = 50 mm, carrera = 375 mm, n = 60 rpm) tiene una presión en la aspiración de -4,5 m.c.a. y de impulsión de 18 m.c.a., calcular: La fuerza que requiere la bomba en las dos carreras El caudal de la bomba La potencia absorbida Problemas Tema 6 Carlos J Renedo - 8

9 6. Un ventilador aspira de una gran habitación que está a 725 mm.hgr y 1,15 kg/m 3, el aire se impulsa por un conducto rectangular de 0,25 m 2. a la salida del ventilador la presión es de 75 mm.c.a, y un tubo de Prandtl marca una presión (dinámica) de 88 mm.c.a., calcular: Las presiones estática, dinámica y total que suministra el ventilador La velocidad de aire en el conducto de salida Caudal de aire que proporciona el ventilador Potencia suministrada por el ventilador Problemas Tema 6 Carlos J Renedo - 9

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

CONCEPTOS DE HIDRAULICA Y NEUMÁTICA

CONCEPTOS DE HIDRAULICA Y NEUMÁTICA CONCEPTOS DE HIDRAULICA Y NEUMÁTICA Magnitudes fundamentales del sistema Internacional. Las magnitudes fundamentales se agrupan en sistemas de unidades. - Longitud, cuya unidad basica es el metro (m) -

Más detalles

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta.

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta. Estática de fluidos 1. Para elevar un automóvil de 13300 N de peso se utiliza una bomba hidráulica con un pistón de 15 cm de diámetro. Qué fuerza debe aplicarse al otro pistón de 5 cm de diámetro, conectado

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 DE FLUJOS INTERNOS IMPORTANTES Tabla 9.5 (continuación) iii. Zona rugosa 70 = + 8.5 e f 1-2.0 Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 = Para la zona rugosa y la zona de transición

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9)

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9) MM01 - KIT DE MONTAJE: GRIFO DE BOLA Y VÁLVULA DE CIERRE (pag. N - 1) MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM03 - MONTAJE Y MANTENIMIENTO: BOMBA CENTRÍFUGA MULTIETAPA (pag. N - 5) MM04

Más detalles

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR TEMA.- CINEMÁTICA Y DINÁMICA DEL MOTOR 5 ..- Calcular la oblicuidad de la biela en grados, el deslizamiento, la aceleración, la velocidad instantánea y media del pistón para una posición angular de la

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

Pérdidas en tuberías y máquinas hidráulicas

Pérdidas en tuberías y máquinas hidráulicas Pérdidas en tuberías y máquinas hidráulicas Problema 4.1 Determinar el tiempo de vaciado de la gasolina del tanque de la figura que tiene forma de un paralelepípedo rectangular con área de la base S =

Más detalles

PROBLEMAS DE MOTORES TÉRMICOS

PROBLEMAS DE MOTORES TÉRMICOS PROBLEMAS DE MOTORES TÉRMICOS 1. Según los datos del fabricante, el motor de un coche tiene las siguientes características: Número de cilindros: 4 Calibre: 86 mm Carrera: 86 mm. Relación de compresión:

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

PRESIÓN Y ESTÁTICA DE FLUIDOS

PRESIÓN Y ESTÁTICA DE FLUIDOS La presión se define como una fuerza normal ejercida por un fluido por unidad de área. Se habla de presión sólo cuando se trata de un gas o un líquido. Puesto que la presión se define como fuerza por unidad

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial)

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial) DISEÑO MECÁNICO (Ingeniería Industrial) Problemas de correas PROBLEMA 1 Analizar y calcular las tensiones a lo largo de la correa plana de la transmisión de la figura, indicando el valor máximo y su situación.

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3.

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. EJERCICIOS DE DENSIDAD 1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. 2.- Qué VOLUMEN OCUPAN 300 gr DE MERCURIO? SI LA

Más detalles

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 2. TRABAJO. UNIDADES Y EQUIVALENCIAS...2 3. FORMAS DE ENERGÍA...3 A) Energía. Unidades y equivalencias...3 B) Formas

Más detalles

Agustin Martin Domingo

Agustin Martin Domingo Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Tubería interior. Tubería interior

Tubería interior. Tubería interior TUBERÍA PREAISLADA ALB CON POLIETILENO (PE) 1. Descripción Tubería Preaislada ALB flexible, para transporte de calor y frío en redes de distribución, tanto locales como de distrito, formada por una o dos

Más detalles

MECANICA DE FLUIDOS [ ] kg m

MECANICA DE FLUIDOS [ ] kg m MECANICA DE FLUIDOS DEFINICIÓN.- Es parte de la física clásica que tiene por objeto el estudio de los fluidos, sus principios y las leyes que lo establecen; la materia se clasifica en sólidos y fluidos,

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009 00 CONVOCATORIA: JUNIO MATERIA: TECNOLOGÍA INDUSTRIAL II OPCIÓN A EJERCICIO a) Calcule el esfuerzo (σ) en GPa y la deformación

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

FLUIDOS IDEALES EN MOVIMIENTO

FLUIDOS IDEALES EN MOVIMIENTO FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 4 Fuerzas en los fluidos Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página CUESTIONARIO PRIMERO

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS Se denomina NPSH (Net Positive Suction Head) o ANPA (Altura Neta Positiva de Aspiración) a la diferencia entre la presión

Más detalles

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Sección 901. Nombre: Cuenta: Nombre: Cuenta: Instrucciones: Contesta lo que se te pide clara y ordenadamente, si necesitas

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

INFORME TÉCNICO Nº 10

INFORME TÉCNICO Nº 10 INFORME TÉCNICO Nº 10 Presiones Hidráulicas La norma UNE-EN 805 y otras informaciones, dan una serie de definiciones relativas a la presión que indicamos a continuación: Designación de presiones según

Más detalles

Guía de Ejercicios de Estática de Fluidos

Guía de Ejercicios de Estática de Fluidos Universidad Nacional Experimental Politécnica de la Fuerza Armada Ciclo básico de ingeniería Sede Palmira Física II Secciones: III03M y III04M Guía de Ejercicios de Estática de Fluidos 1. La máxima presión

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD

PROBLEMAS DE MÁQUINAS. SELECTIVIDAD PROBLEMAS DE MÁQUINAS. SELECTIVIDAD 77.- El eje de salida de una máquina está girando a 2500 r.p.m. y se obtiene un par de 180 N m. Si el consumo horario de la máquina es de 0,5 10 6 KJ. Se pide: a) Determinar

Más detalles

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa?

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa? Slide 1 / 20 1 Dos sustancias, A tiene una densidad de 2000 kg/m 3 y la B tiene una densidad de 3000 kg/m 3 son seleccionadas para realizar un experimento. Si el experimento necesita de igual masa de cada

Más detalles

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA...

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... DOCUMENTO : ÍNDICE. INTRODUCCIÓN... 2 2. CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... 3 3. CÁLCULO DE LA PÉRDIDA DE CARGA... 5 4. SELECCIÓN DEL GRUPO DE PRESIÓN... 8 5. CALCULO DEL ALJIBE... 9 Protección

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso)

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 31 de ENERO de 2009 Nombre y Apellidos:.. Una lavadora de uso doméstico, de carga frontal, presenta sólo un programa de lavado. El proceso completo

Más detalles

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales Sistemas neumáticos y oleohidráulicos. Consulta de catálogos. 1 PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales En primer término la práctica consiste simplemente en observar con

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

FABRICACIÓN N ASISTIDA POR ORDENADOR

FABRICACIÓN N ASISTIDA POR ORDENADOR FABRICACIÓN N ASISTIDA POR ORDENADOR TEMA 14: INTRODUCCIÓN N Y APLICACIONES DE LOS SISTEMAS HIDRÁULICOS ÍNDICE 1. Introducción 2. Leyes generales de la hidráulica 3. Características del aceite de mando

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Problemas Capítulo II

Problemas Capítulo II 1 Problemas Capítulo II Sección 2.12 CALENTAMIENTO Y VACIADO 2.1. Una cantidad suficiente de cobre puro se va a calentar para fundirse en una gran placa en un molde abierto. La placa tienen las dimensiones

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO)

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) GENERALIDADES. CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) El bombeo hidráulico tipo jet es un sistema artificial de producción especial, a diferencia del tipo pistón, no ocupa partes móviles y

Más detalles

Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda.

Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda. 7 Pressió i cabal Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda. En la arena de la playa, la profundidad de las huellas de los pies de una persona es

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

PROPIEDADES DE LA MATERIA

PROPIEDADES DE LA MATERIA PROPIEDADES DE LA MATERIA FLUIDOS Las tres fases de la materia. Presión. Propiedades 1 y 2 de los fluidos. Efecto de la gravedad sobre los fluidos. Densidad. Propiedad 3 de los fluidos. Presión atmosférica.

Más detalles

HRE 01.1 GRUPO HIDRAULICO

HRE 01.1 GRUPO HIDRAULICO HRE 01.1 GRUPO HIDRAULICO Características de la bomba: Altura manométrica máxima 23 m.c.a. Caudal 20 / 160 l/min. H 21 / 10 m.c.a. H max. 23 m.c.a. H min. 10 m.c.a. Potencia consumida 750 W (1 HP). Potencia

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

PÉRDIDAS DE CARGA EN TUBERÍAS

PÉRDIDAS DE CARGA EN TUBERÍAS Prácticas de Laboratorio PÉRDIDAS DE CARGA EN TUBERÍAS 1. INTRODUCCIÓN TEÓRICA.. DESCRIPCIÓN DE LA INSTALACIÓN E INSTRUMENTACIÓN. 3. DEFINICIÓN DE OBJETIVOS Y TRABAJO A REALIZAR. 4. EXPOSICIÓN DE RESULTADOS.

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Conceptos Básicos (Relaciones de flujos)

Conceptos Básicos (Relaciones de flujos) Conceptos Básicos (Relaciones de flujos) 1. Una solución ideal contiene 0,1 x 10-3 m 3 de metanol y 0,9 x 10-3 m 3 de benceno se mueve a una velocidad media molar de 0,12 m/s. Si el flujo molar del benceno

Más detalles

PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES

PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES DEPARTAMENTO DE INGENIERÍA NUCLEAR Y MECÁNICA DE FLUIDOS INGENIARITZA NUKLEARRA ETA JARIAKINEN MEKANIKA SAILA PROBLEMAS DE MECÁNICA DE FLUIDOS PROPUESTOS EN EXÁMENES CURSO 2013-2014 2 PROBLEMAS DE MECÁNICA

Más detalles

1 o ) Longitud equivalente del sistema referida a la tubería 1 2 o ) Caudal correspondiente a cada tubería

1 o ) Longitud equivalente del sistema referida a la tubería 1 2 o ) Caudal correspondiente a cada tubería Pérdidas en tuberías Problema 4.1 Determinar el tiempo de vaciado de la gasolina del tanque de la figura que tiene forma de un paralelepípedo rectangular con área de la base S = 0,5 m 2 y altura H = 0,6

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... El eje de la figura recibe la potencia procedente del motor a través del engranaje cilíndrico recto que lleva montado, y se acopla a la carga por

Más detalles

HIDRAULICA EJERCICIOS PRUEBA

HIDRAULICA EJERCICIOS PRUEBA UNIVERSIDAD DIEGO PORTALES ESCUELA DE INGENIERIA OBRAS CIVILES HIDRAULICA EJERCICIOS PRUEBA 1. Para un canal trapezoidal de ancho basal b = 6 m y taludes (2/1) (H/V), pendiente 0,3%, coeficiente de rugosidad

Más detalles

ECUACIONES FUNDAMENTALES DE LA MECÁNICA DE FLUIDOS

ECUACIONES FUNDAMENTALES DE LA MECÁNICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ECUACIONES FUNDAMENTALES DE LA MECÁNICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE

Más detalles

11. CÁLCULO HIDRÁULICO

11. CÁLCULO HIDRÁULICO 11. CÁLCULO HIDRÁULICO 11.1 PÉRDIDA DE CARGA Y DETERMINACIÓN DEL DIÁMETRO Y VELOCIDAD DE LA TUBERÍA Un fluido al ser conducido a través de una tubería ejerce una fuerza de roce, generándose una pérdida

Más detalles

Bombas de circulación Ejecución bridada 1.1.

Bombas de circulación Ejecución bridada 1.1. 1.1. BOMBAS DE CIRCULACION SERIE FZP Y MFZP 1. GENERALIDADES La bomba de la serie FZP es una bomba bridada del tipo paletas con caudal constante. Se puede suministrar con bomba bridada (MFZP) y en standard

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

HIDRAULICA Y CIVIL S.A.S

HIDRAULICA Y CIVIL S.A.S I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec

Más detalles

Problemas de Manometría

Problemas de Manometría El agua dentro de un recipiente se presuriza con aire y la presión se mide con un manómetro de varios fluidos como se muestra en la figura. Determine la presión manométrica del aire en el recipiente si

Más detalles

Análisis y Optimización, con ayuda de Software especializado, del Sistema de Protección Contra Incendio de un Parque de almacenamiento de Combustible

Análisis y Optimización, con ayuda de Software especializado, del Sistema de Protección Contra Incendio de un Parque de almacenamiento de Combustible ANEXOS Página 30 ANEXO 1: DIMENSIONAMIENTO DEL SPCI 1.1. CUMPLIMIENTO DEL REGLAMENTO DE INSTALACIONES PETROLIFERAS...3 1.. SISTEMA DE REFRIGERACIÓN DE TANQUES...3 1.3. SISTEMA DE ESPUMA...3 1.4. CÁLCULO

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles
Sitemap