Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso ) Álgebra Lineal Práctica 3


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3"

Transcripción

1 1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso ) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la forma siguiente. Si por ejemplo tenemos la matriz ( ) se introduce como: >>A=[ ; ] O bien, >>A=[1,2,3,4;5,6,7,8]; Observemos que unas matrices especiales son los vectores, de esta forma, el vector fila v = (1.0, 1.1,1.2,1.3,..., 1.9,2.0), se escribe en Matlab como >>v=[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] 2. Operaciones y comandos para Matrices Hemos visto cómo se introducen las matrices en Matlab. Veamos un ejemplo para introducir algunos de los comandos básicos: Ejemplo 1 Operaciones Elementales Definimos dos matrices: >>A=[2 1;3 2] >>B=[3 4;-1 5] B = >>A+B Para sumar las dos matrices: Para multiplicar una matriz por un escalar: 8

2 >>3*A Producto de matrices: >>C=A*B C = Siempre que los tamaños de las matrices sean los adecuados. Para saber cuál es el tamaño de una matriz con la que estamos trabajando, >>size(a) 2 2 Que quiere decir, evidentemente, 2 filas y 2 columnas. Para calcular la matriz transpuesta: >>A Ejercicio 1 Utilizando las matrices definidas en el ejemplo anterior, comprobar que (AB) t = B t A t. (A t es la transpuesta de A). Ejemplo 2 Operaciones término a término:.*./.^ Matlab tiene tres operaciones, que las llamaremos operaciones con punto, que permiten i) multiplicar matrices término a término:.* ii) dividir matrices término a término:./ ii) elevar los términos de una matriz a una cierta potencia:.^ Si v es el vector definido en la Sección 2, explorar qué hace la orden >>v.^2 Por otra parte, si A y B son las matrices definidas anteriormente, explorar qué hacen las órdenes >>A.*B >>A./B Estas operaciones con punto son esenciales en el cálculo numérico y se utilizan para representar funciones numéricamente. Ejemplo 3 Matrices especiales con Matlab Para generar la matriz identidad cuadrada, >>eye(3)

3 Por qué habrán elegido el nombre eye? Una matriz 3 2 llena de unos, >>ones(3,2) Y si queremos que esté llena de ceros, >>zeros(3,2) Para generar una matriz con números aleatorios uniformemente distribuidos entre 0 y 1, >>rand(3,2) Si se usa el comando randn los números aleatorios son normalmente distribuidos, siguiendo la Normal Estandar N(0, 1). Ejemplo 4 Rango, Inversa y Determinante Definimos la matriz, >>X=[2 3 4; 1-1 0] X = Para calcular su rango, >>rank(x) 2 Supongamos que tenemos definida la siguiente matriz, H = Para calcular su inversa, >>inv(h) Y si queremos ver el resultado en forma racional, >>format rational >>inv(h) 53/360-13/90 23/360-11/180 1/45 19/180-7/360 17/90-37/360 (Para ver todas las opciones del comando format hacer help format) Para calcular el determinante de la matriz anterior H, >>det(h) -360 Ejercicio 2 Generar una matriz cualquiera, por ejemplo 25 25, y calcular su inversa, su rango y su determinante. ( No imprimirla!) Qué ocurre con el determinante de la matriz y el de su inversa? 10

4 Ejemplo 5 Los comandos especiales rref y rrefmovie El comando rref produce la forma reducida escalonada por filas de una matriz usando la eliminación de Gauss-Jordan, es decir, haciendo ceros por debajo y por encima de la diagonal principal sin mover las columnas. Por ejemplo, definimos la matriz, >>A=[-1 2-1;2 1 2;2 4 2] Ahora escribimos el comando aplicado a la matriz, >>R=rref(A) R = El comando rrefmovie produce exactamente el mismo resultado pero nos indica paso a paso cómo se va obteniendo la matriz resultado e incluso qué filas o columnas son despreciables (por ser linealmente dependientes de las otras), información muy últil si queremos calcular el rango de la matriz por ejemplo. Es decir, produce una especie de película (movie) de todo el proceso. >>rrefmovie(a) Original matrix Press any key to continue... Ahora pulsamos una tecla para continuar, swap rows 1 and Press any key to continue... Nos indica que ha intercambiado la primera y segunda filas, pulsamos de nuevo una tecla, pivot = A(1,1) 11

5 1 1/ Press any key to continue... Ahora nos indica que va a pivotear sobre el elemento (1,1) de la matriz, eliminate in column 1 1 1/ Press any key to continue... Ahora nos está indicando que va a eliminar (hacer ceros) en la primera columna y así sucesivamente hasta obtener el mismo resultado que nos dió el comando rref. Ejercicio 3 a) Calcular el rango de la matriz siguiente utilizando el comando rref o rrefmovie: b) Si una matriz H es cuadrada y no singular, es decir det(h) 0, cuál será la matriz R = rref(h)? c) Cómo podemos utilizar estos comandos para calcular la inversa de una matriz invertible? Aplicarlo a la matriz, B = Para verificar el resultado se puede calcular la inversa directamente con inv(b). 3. Matrices dispersas Ejemplo 6 A veces usamos matrices con muchos ceros. MatLab tiene una forma de trabajar con ellas usando menos bytes con el comando sparse. Veámoslo con un ejemplo: Introducimos una matriz: >>A=[ ; ; ; ]; - Para convertirla a matriz dispersa >>s=sparse(a) Si preguntamos whos" vemos que s ocupa menos que A. - Para recuperar la matriz inicial >>full(s) Para visualizar gráficamente la matriz: >>spy(s) o bien, >>imagesc(s),colorbar Se pueden generar directamente matrices sparse : >>sparse(i,j,s,m,n) donde: i,j son los subíndices de los elementos no nulos (i,j son vectores) 12

6 s es un vector con los valores de los elementos no nulos (m,n) es el tamaño de la matriz. De modo que, en el ejemplo anterior, para generar s deberíamos escribir: >>i=[ ]; >>j=[ ]; >>s=[ ]; >>m=4;n=4; >>sparse(i,j,s,m,n) Y obtenemos s. Para obtener la matriz inicial >>full(s) Ejercicio 4 Utilizando el comando sparse, generar la matriz (Visualizarla para comprobar que está bien). 4. Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales, a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a m1 x 1 + a m2 x a mn x n = b m con m ecuaciones y n incógnitas se puede escribir en forma matricial, donde, Ax = b a 11 a a 1n x 1 b 1 a 21 a a 2n. ; x = x 2. y b = b 2. a m1 a m2... a mn x n b m Vamos a ver mediante algunos ejemplos y ejercicios cómo se pueden resolver los sistemas de ecuaciones lineales utilizando algunos de los comandos de Matlab descritos anteriormente. Ejemplo 7 Consideremos el sistema, entonces, siguiendo la notación anterior, 2x y + z = 3 x + y = 3 y 3z = 7 13

7 , x = x y y b = 3 3 z 7 Como se trata de un sistema con solución única, ya que el determinante de A es distinto de cero, >>det(a) -8 Una forma de resolver el sistema es escribir la matriz orlada (o ampliada) >>Ab=[A b] y hacer rref(ab) con lo que obtenemos es decir, la solución es x = 1, y = 2, z = 3. Otra forma de resolver el sistema consiste en despejar x, sin más que escribir x = A 1 b, >>x=inv(a)*b x = Hay otra forma de hacerlo, utilizando lo que en Matlab se denomina como división matricial a la izquierda: >>x=a\b x = En este caso, el resultado es el mismo, pero es diferente la forma en la que trabaja el ordenador. En este segundo caso el método que utiliza es el de la factorización LU, que es una modificación de la eliminación gaussiana. Ejercicio 5 Resolver el siguiente sistema utilizando los tres procedimientos anteriormente descritos y comprobar que sale la misma solución x x x 3 = x 4 14

8 5. Sistemas homogéneos y su aplicación al ajuste de reacciones químicas Un sistema de ecuaciones lineales a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. a m1 x 1 + a m2 x a mn x n = b m con m ecuaciones y n incógnitas se llama homogéneo, si todas las constantes b 1, b 2,...,b m son cero. Es decir, el sistema general homogéneo está dado por a 11 x 1 + a 12 x a 1n x n = 0 a 21 x 1 + a 22 x a 2n x n = 0. a m1 x 1 + a m2 x a mn x n = 0 En un sistema homogéneo, siempre existe la solución trivial (o solución cero): x 1 = x 2 =... = x n = 0 Por tanto, en un sistema homogéneo caben dos posibilidades: - o bien solo existe la solución trivial; - o bien existe un número infinito de soluciones, además de la trivial, llamadas soluciones no triviales. Ejemplo 8 Un sistema homogéneo que tiene sólo la solución trivial: 3x 1 + 4x 2 + 6x 3 = 0 4x 1 + 5x 2 + 6x 3 = 0 3x 1 + x 2 2x 3 = 0 Si escribimos la matriz ampliada , y aplicamos el comando rref, obtendremos lo que quiere decir que la única solución es la trivial, , x 1 = x 2 = x 3 = 0. Ejemplo 9 Un sistema homogéneo con un número infinito de soluciones: x 1 + 2x 2 x 3 = 0 3x 1 3x 2 + 2x 3 = 0 x 1 11x 2 + 6x 3 = 0 Haciendo lo mismo que en el ejemplo anterior (y poniendo el resultado en formato racional, format rational,) obtenemos 15

9 , lo que quiere decir que, son soluciones todas las ternas de números reales de la forma ( 1 9 x 3, 5 ) 9 x 3, x 3, para cualquier valor de x 3. En particular, para x 3 = 0, obtenemos la solución trivial; para x 3 = 1, obtenemos la solución ( 1 9, 5 ) 9, 1, para x 3 = 9π, la solución ( π, 5π, 9π). Ejemplo 10 Un sistema homogéneo con más incógnitas que ecuaciones tiene un número infinito de soluciones: Resolvemos el sistema: { x 1 + x 2 x 3 = 0 4x 1 2x 2 + 7x 3 = 0 como en los ejemplos anteriores, escribiendo la matriz ampliada y haciendo rref, para obtener , 0 lo cual quiere decir que son soluciones todas las ternas de números reales de la forma ( 5 6 x 3, 11 ) 6 x 3, x 3, x 3 IR Observación: Si en estos tres ejemplos hubiéramos escrito la matriz sin ampliar y hubiéramos hecho rref, habríamos visto las soluciones más rápidamente: En el primer ejemplo, puesto que el determinante de la matriz del sistema no era nulo, el resultado era la matriz identidad (solución única.) En el segundo caso, aparece una fila de ceros. Y en el tercer caso, qué sucede?: lo que sucede siempre que hay un sistema homogéneo con más incógnitas que ecuaciones, que tiene un número infinito de soluciones. Ejercicio 6 Resolver el sistema homogéneo x 1 2x 2 + x 3 + x 4 = 0 3x 1 + 2x 3 2x 4 = 0 4x 2 x 3 x 4 = 0 5x 1 + 3x 3 x 4 = 0 Ejercicio 7 Resolver el sistema 25x 1 16x x x 4 57x 5 = 0 16x 1 + 3x 2 + x 3 12x 5 = 0 8x x 4 26x 5 = 0 16

10 Este estudio de los sistemas homogéneos se puede aplicar al ajuste de reacciones químicas: Ejemplo 11 Para ajustar la reacción Fe 2 O 3 (s) + C(s) Fe(l) + CO(g) que se produce cuando calentamos mineral de óxido de hierro con un exceso de carbono para obtener hierro puro, procedemos de la siguiente manera: Fe : 2x 1 = x 3 O : 3x 1 = x 4 C : x 2 = x 4 Es decir, se trata de resolver el siguiente sistema homogéneo de 3 ecuaciones con 4 incógnitas (que, como acabamos de ver, siempre tiene solución no trivial): 2x 1 x 3 = 0 3x 1 x 4 = 0 (1) x 2 x 4 = 0 O lo que es lo mismo, si consideramos x 4 como un parámetro (x 4 = λ) tratamos de resolver el siguiente sistema de 3 ecuaciones con 3 incógnitas 2x 1 x 3 = 0 3x 1 = λ x 2 = λ obteniendo la solución x 4 = λ, x 2 = λ, x 1 = λ 3, x 3 = 2 λ 3 De modo, que podemos decir que el sistema 1 tiene las infinitas soluciones: x 1 = λ 3, x 2 = λ, x 3 = 2 λ 3, x 4 = λ para cualquier valor de λ IR. En nuestro caso, solo nos interesa la solución de números enteros positivos x 1, x 2, x 3, x 4 que no tengan divisor común diferente de 1, es decir, para λ = 3: de modo que la reacción ajustada es Ejercicio 8 Ajustar las siguientes reacciones químicas: 1. CO 2 + H 2 O C 6 H 12 O 6 + O 2 x 1 = 1, x 2 = 3, x 3 = 2, x 4 = 3, Fe 2 O 3 + 3C 2Fe + 3CO 2. Pb(N 3 ) 2 + Cr(MnO 4 ) 2 Cr 2 O 3 + MnO 2 + Pb 3 O 4 + NO 3. AgNO 3 + K 2 CrO 4 Ag 2 CrO 4 + KNO 3 4. Mg + HCl MgCl 2 + H 2 Ejercicio 9 Ajustar la siguiente serie de reacciones químicas que se utilizan para producir clorato de sodio: 1. KMnO 4 + HCl KCl + MnCl 2 + H 2 O + Cl 2 2. Cl 2 + Ca(OH) 2 Ca(ClO 3 ) 2 + CaCl 2 + H 2 O 3. Ca(ClO 3 ) 2 + Na 2 SO 4 CaSO 4 + NaClO 3 17

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Comenzando con MATLAB

Comenzando con MATLAB ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Álgebra Lineal Tutorial básico de MATLAB

Álgebra Lineal Tutorial básico de MATLAB Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Guía de uso de MATLAB

Guía de uso de MATLAB Guía de uso de MATLAB Se necesitan unos pocos comandos básicos para empezar a utilizar MATLAB. Esta pequeña guía explica dichos comandos fundamentales. Habrá que definir vectores y matrices para poder

Más detalles

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Tema 3: Vectores y matrices. Conceptos básicos

Tema 3: Vectores y matrices. Conceptos básicos Tema : Vectores matrices. Conceptos básicos 1. Definición Matlab está fundamentalmente orientado al trabajo el cálculo matricial. Veremos que las operaciones están definidas para el trabajo con este tipo

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Comprender y utilizar la notación de dos puntos para la creación de listas.

Comprender y utilizar la notación de dos puntos para la creación de listas. Tema 2 Vectores y matrices. Objetivos Cuando finalice este tema, el alumno deberá ser capaz de: Definir vectores y matrices con Octave. Comprender y utilizar la notación de dos puntos para la creación

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO ÁLGEBRA LINEAL ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma, Tlalnepantla,

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Operaciones Matriciales. Usos y Aplicaciones

Operaciones Matriciales. Usos y Aplicaciones Operaciones Matriciales. Usos y Aplicaciones Héctor L. Mata Las siguientes notas tienen por finalidad reforzar el conocimiento de los cursantes del Seminario de Economía Aplicada en lo referente a la forma

Más detalles

Introducción a Matlab

Introducción a Matlab Introducción a Matlab Visión en Robótica 1er cuatrimestre de 2013 En este apunte veremos las operaciones más comunes del entorno de programación Matlab. Se aprerán a manejar los aspectos básicos como saltos

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

ESCALARES, VECTORES Y MATRICES

ESCALARES, VECTORES Y MATRICES ESCALARES, VECTORES Y MATRICES MATRIZ Al resolver problemas de ingeniería, es importante poder visualizar los datos relacionados con el problema. A veces los datos consisten en un solo número, como el

Más detalles

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales.

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 3 Matrices, determinantes y sistemas de ecuaciones lineales 3- Matrices

Más detalles

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

Clase 2: Operaciones con matrices en Matlab

Clase 2: Operaciones con matrices en Matlab Clase 2: Operaciones con matrices en Matlab Hamilton Galindo UP Hamilton Galindo (UP) Clase 2: Operaciones con matrices en Matlab Marzo 2014 1 / 37 Outline 1 Definición de matrices desde teclado 2 Operaciones

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

OPERACIONES MATEMÁTICAS CON MATRICES. Vicerrectoria Administrativa

OPERACIONES MATEMÁTICAS CON MATRICES. Vicerrectoria Administrativa OPERACIONES MATEMÁTICAS CON MATRICES Vicerrectoria Administrativa SUMA Y RESTA La suma y resta de matrices o vectores, se realiza con elementos de la misma dimensión y elemento a elemento (A11 + B11) +

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Comprender y utilizar la notación de dos puntos para la creación de listas.

Comprender y utilizar la notación de dos puntos para la creación de listas. Tema 2 Vectores y matrices Objetivos Cuando finalice este tema, el alumno deberá ser capaz de: Definir vectores y matrices con Octave. Comprender y utilizar la notación de dos puntos para la creación de

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Tema 2: Espacios vectoriales La estructura de espacio vectorial juega un papel fundamental en el álgebra lineal pues es la base de todos los conceptos que ahí se desarrollan. Vamos en la siguiente sección

Más detalles

CÁLCULO SIMBÓLICO con la calculadora gráfica TI 92

CÁLCULO SIMBÓLICO con la calculadora gráfica TI 92 CÁLCULO SIMBÓLICO con la calculadora gráfica TI 92 T 3 España T 3 EUROPE Onofre Monzó José Antonio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Fernando Juan Alfred

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Álgebra Lineal. Sesión de Prácticas 3: Subespacios vectoriales de K n. Operaciones con subespacios. Primero Grado Ingeniería Informática

Álgebra Lineal. Sesión de Prácticas 3: Subespacios vectoriales de K n. Operaciones con subespacios. Primero Grado Ingeniería Informática Álgebra Lineal Sesión de Prácticas 3: Subespacios vectoriales de K n. Operaciones con subespacios Primero Grado Ingeniería Informática Departamento de Matemática Aplicada Facultad de Informática 1 / 22

Más detalles

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia... Page 1 of 7 Departamento: Dpto Matematica Nombre del curso: ALGEBRA LINEAL Clave: 003866 Academia a la que pertenece: Algebra Lineal Requisitos: Requisito de Algebra Lineal: Calculo I, Fundamentos de Matem

Más detalles

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Miscelánea Matemática 43 (2006) 7 132 SMM Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Daniel Gómez-García Facultad de Ingeniería Universidad Autónoma de

Más detalles

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa

Más detalles

facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc.

facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc. MATLAB Introducción al MATLAB MATLAB = MATrix LABoratory Es un entorno de computación que presenta facilidades para cálculo matemático y visualización gráfica Dispone de toolboxes especializados: Control

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Prácticas de Análisis Matricial con MATLAB

Prácticas de Análisis Matricial con MATLAB Prácticas de Análisis Matricial con MATLAB Ion Zaballa. Trabajando con matrices y vectores Ejercicio.- Dados los vectores a = 3 4 a) Calcula el vector 3a a + 4a 3., a = 3, a 3 = b) Si A = [a a a 3 ] es

Más detalles

Computación 1-2011 - Matrices dispersas

Computación 1-2011 - Matrices dispersas Computación 1-2011 - Matrices dispersas Situación: Matrices muy grandes Previsible gran porcentaje de valores = 0 Se busca una forma de representar esas matrices que cueste menos memoria y permita acelerar

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Balanceo de Ecuaciones Químicas

Balanceo de Ecuaciones Químicas Caracas Venezuela Colegio La Salle TH Balanceo de Ecuaciones Químicas Teoría y Ejercicios Balanceo por Tanteo y Método Algebraico. Reacciones Redox: Método del número de oxidación. Método del Ión - electrón.

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Algorítmica y Lenguajes de Programación. MATLAB (i)

Algorítmica y Lenguajes de Programación. MATLAB (i) Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

Introducción al Algebra Matricial

Introducción al Algebra Matricial Introducción al Algebra Matricial Alvaro G. Parra Versión preliminar y bajo revisión. Marzo 00 Alumno de Magíster en Economía Financiera de la Ponti cia Universidad Católica de Chile. Todos los errores

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Problemas de Selectividad. Isaac Musat Hervás

Problemas de Selectividad. Isaac Musat Hervás Problemas de Selectividad Isaac Musat Hervás 3 de mayo de 007 Índice General 1 Problemas de Álgebra 5 1.1 Matrices en General....................... 5 1. Determinantes.......................... 6 1.3

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

TABLA DE CONTENIDOS. Carátula 1 Tabla de Contenidos 3 Introducción 4 Objetivos 5 Principios Teóricos 6 Reacción Química 6 Tipos de Reacciones 7

TABLA DE CONTENIDOS. Carátula 1 Tabla de Contenidos 3 Introducción 4 Objetivos 5 Principios Teóricos 6 Reacción Química 6 Tipos de Reacciones 7 TABLA DE CONTENIDOS Carátula 1 Tabla de Contenidos 3 Introducción 4 Objetivos 5 Principios Teóricos 6 Reacción Química 6 Tipos de Reacciones 7 Detalles Experimentales 9 Materiales y Reactivos 9 Procedimientos

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Práctica 1. Introducción al matlab

Práctica 1. Introducción al matlab Práctica 1. Introducción al matlab Estadística Facultad de Física Objetivos Puesta en marcha de matlab Entrada y salida de datos Manejo de matrices Representaciones gráficas sencillas 1 matlab matlab es

Más detalles

Tronco común 1 Semestre

Tronco común 1 Semestre Tronco común 1 Semestre Programa de la asignatura: Álgebra lineal Universidad Abierta y a Distancia de México Tronco Común 1 Índice... 3 Presentación de la unidad... 3 Propósitos... 3 Competencia específica...

Más detalles
Sitemap